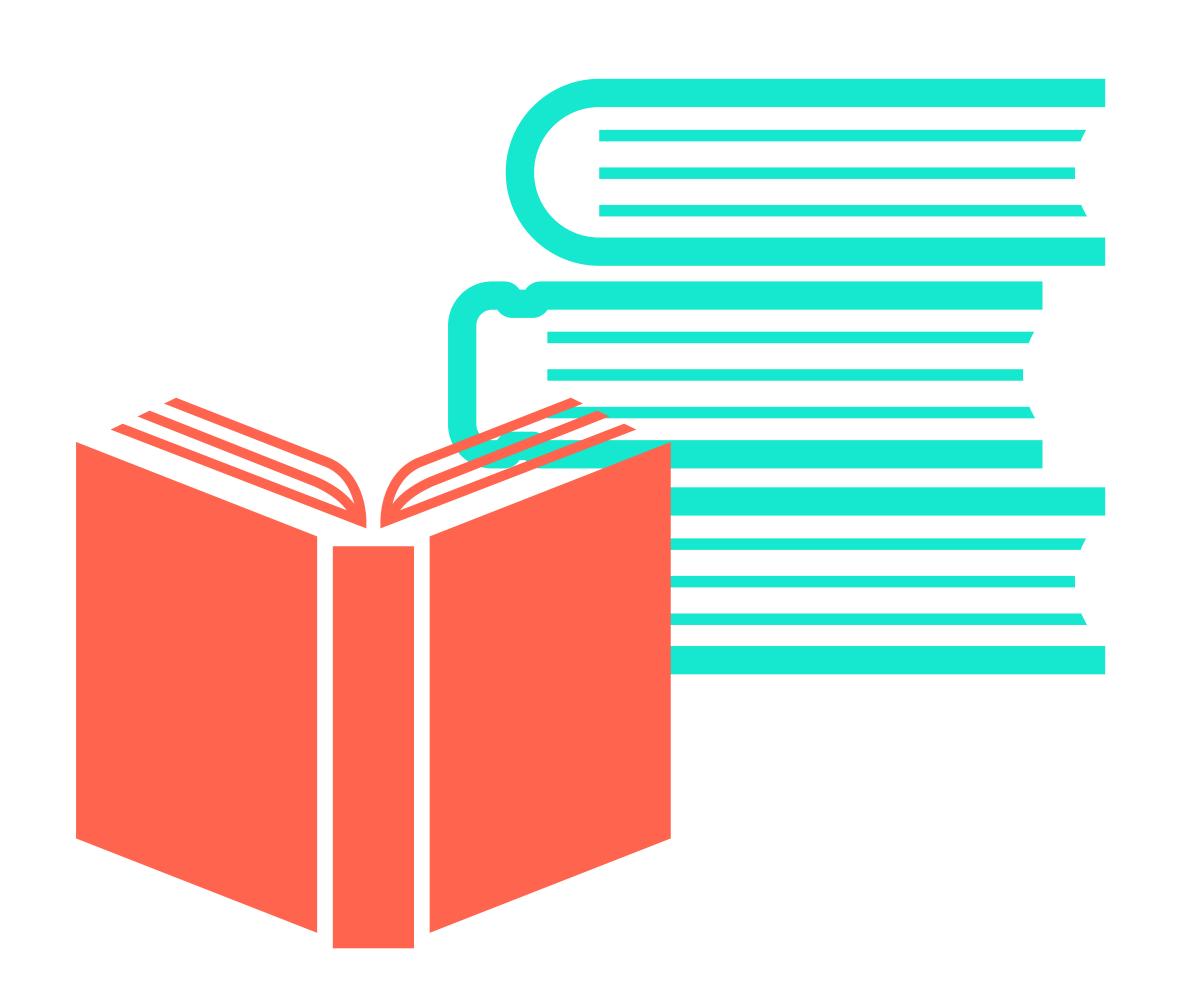
Imperial College London

Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty

Miguel Monteiro, Loïc Le Folgoc, Daniel Coelho de Castro, Nick Pawlowski, Bernardo Marques, Konstantinos Kamnitsas, Mark van der Wilk, Ben Glocker

Methods & Background



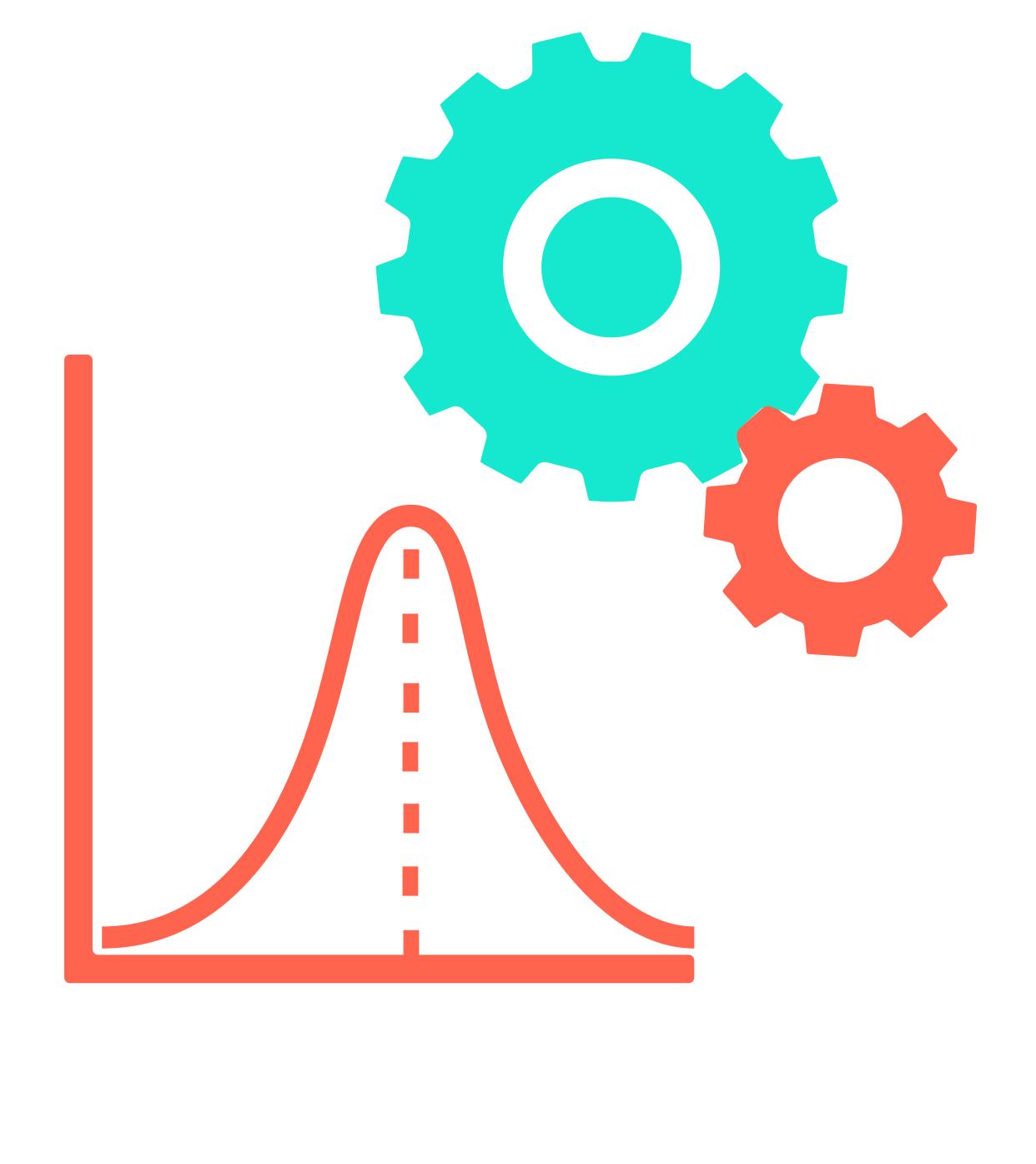
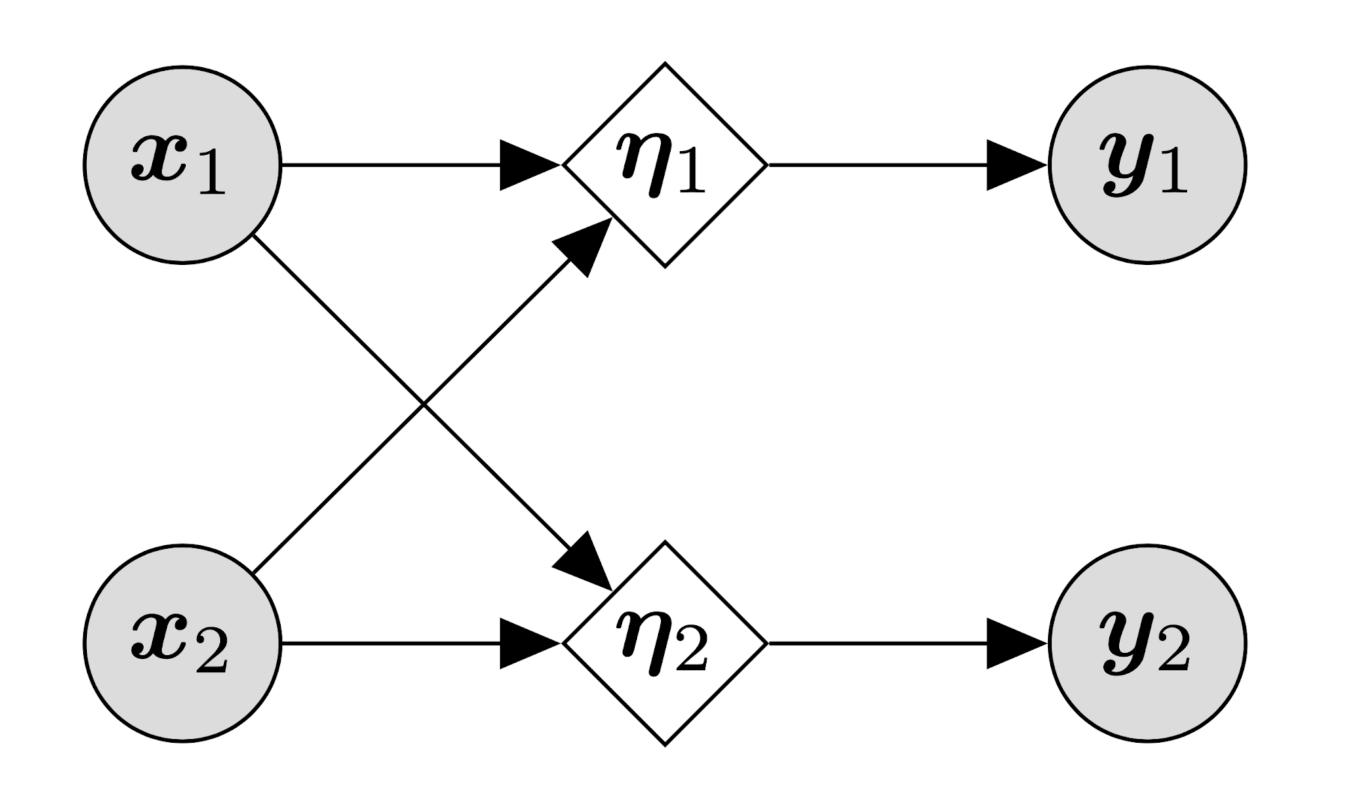


Image segmentation is inherently ambiguous.

Expert 3 Expert 1 Expert 2 **Expert 4 Image** Case 1 Case 2 Case 3

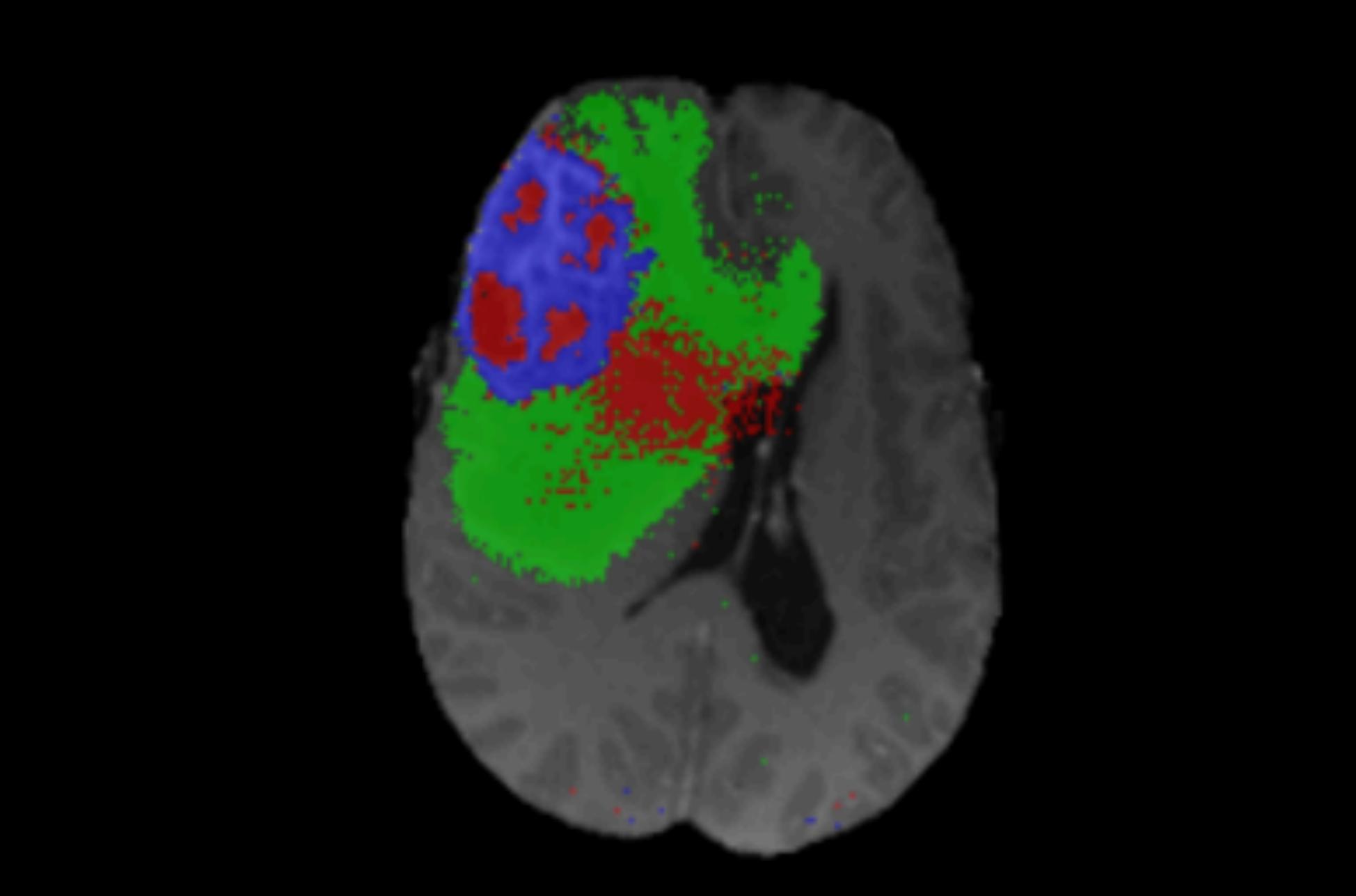


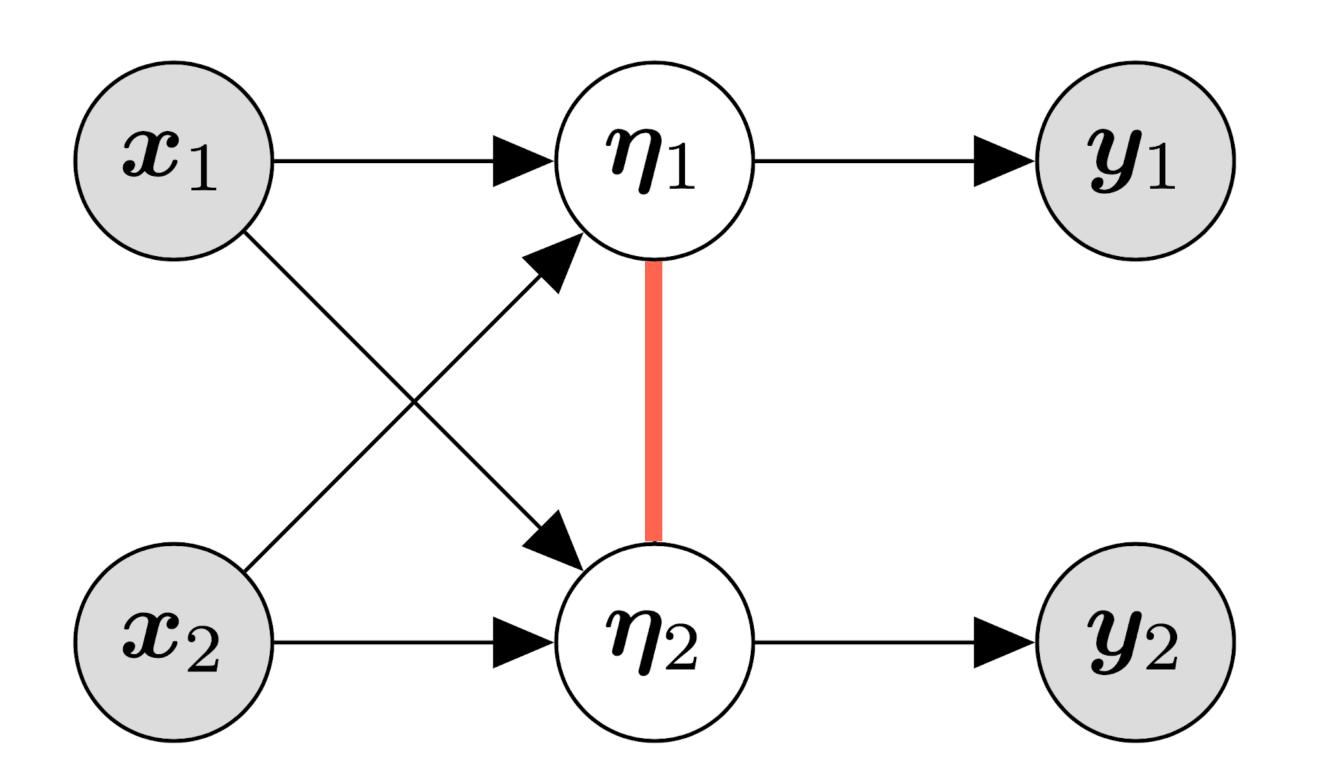
Assumptions:

- 1) Logits are independent given the image;
- 2) Labels are independent given the logits.

Pixel-wise independent loss function:

$$-\log p(\mathbf{y} \ \mathbf{x}) = -\log \int p(\mathbf{y} \ \boldsymbol{\eta}) p_{\phi}(\boldsymbol{\eta} \ \mathbf{x}) d\boldsymbol{\eta} = -\log \prod_{i=1}^{\#pixels} p(\mathbf{y}_i \ \boldsymbol{\eta}_i)$$



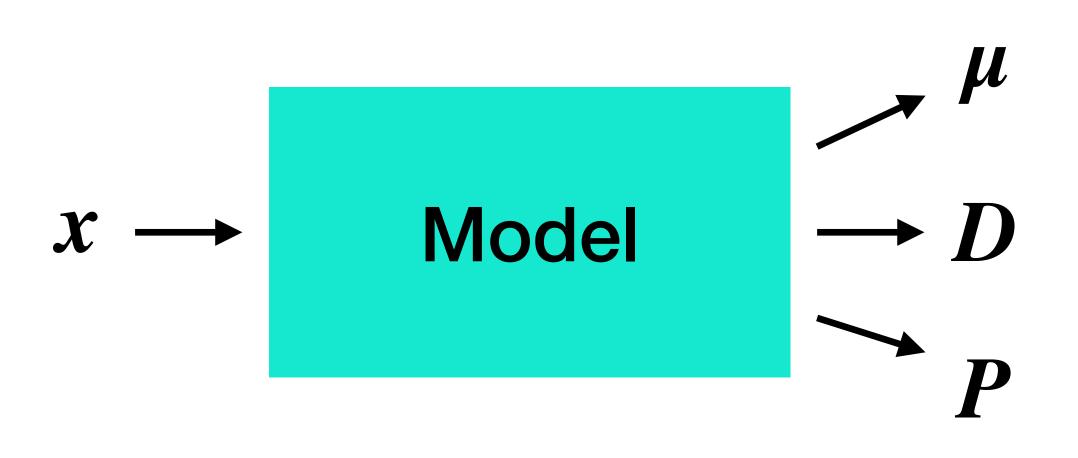


Make the logits dependent of each other by using a low rank multivariate normal

$$p(\eta \ x) = \mathcal{N}(\eta \ \mu(x), \Sigma(x))$$
$$\Sigma = PP^{T} + D$$

Pixel dependencies are modelled in loss function:

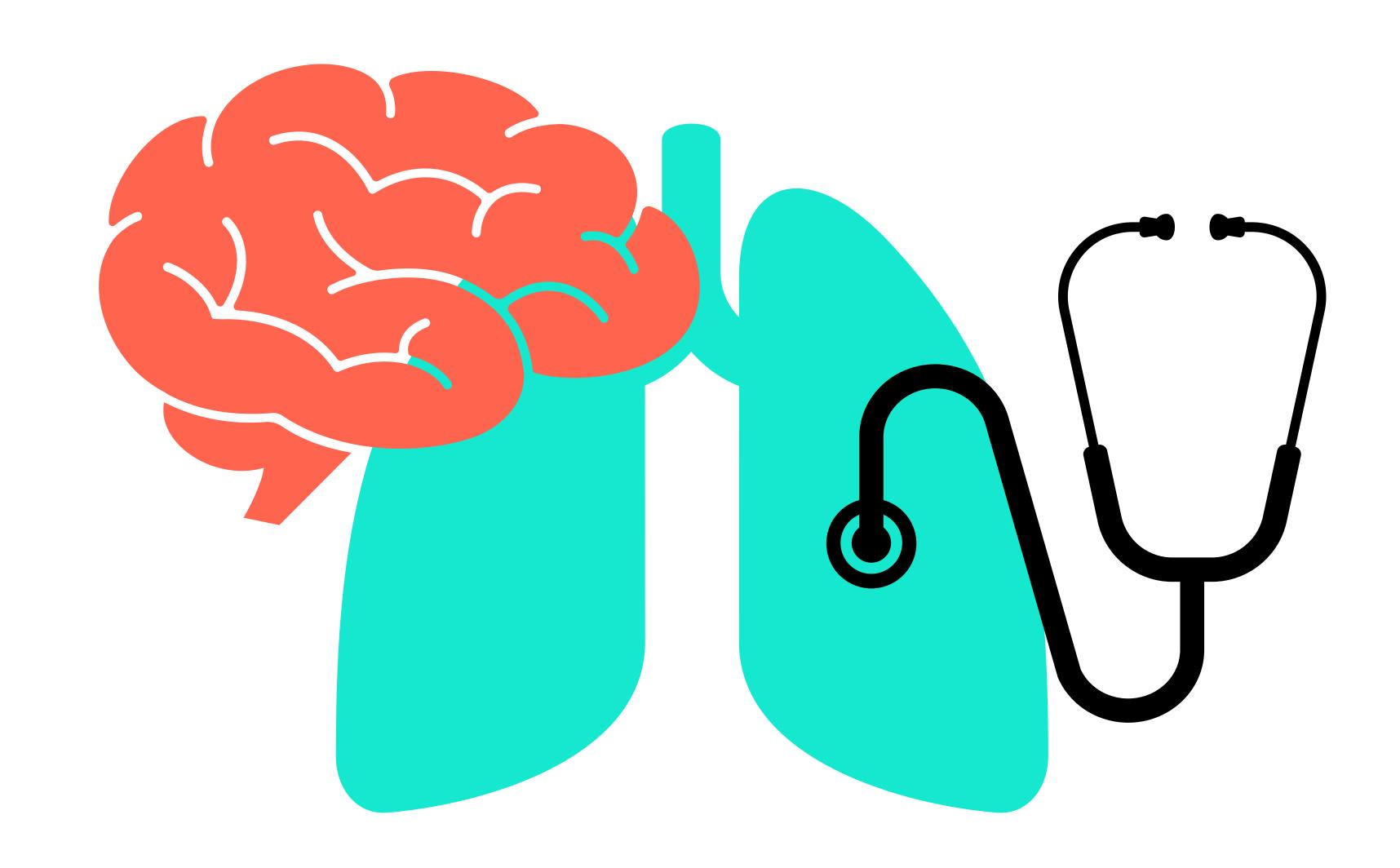
$$-\log p(\mathbf{y} | \mathbf{x}) = \approx -\log \frac{1}{M} \sum_{m=1}^{M} p(\mathbf{y} | \boldsymbol{\eta}^{(m)}), \quad \boldsymbol{\eta}^{(m)} | \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}(\mathbf{x}), \boldsymbol{\Sigma}(\mathbf{x}))$$



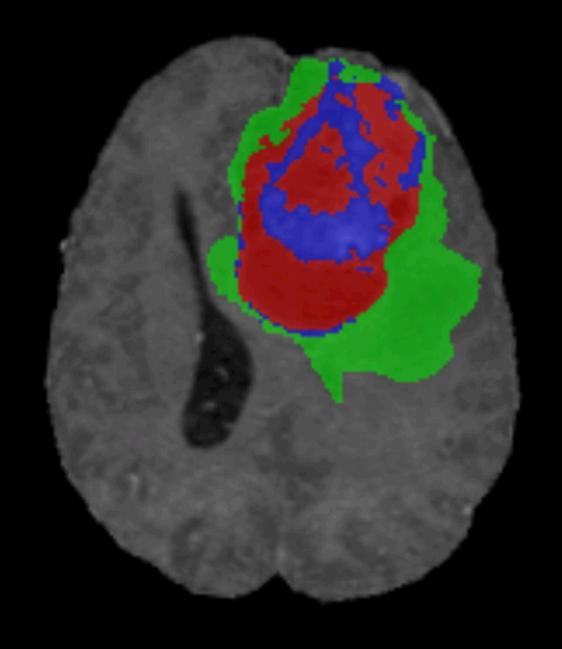
A full covariance matrix scales with the square of the number of pixels times the number of classes.

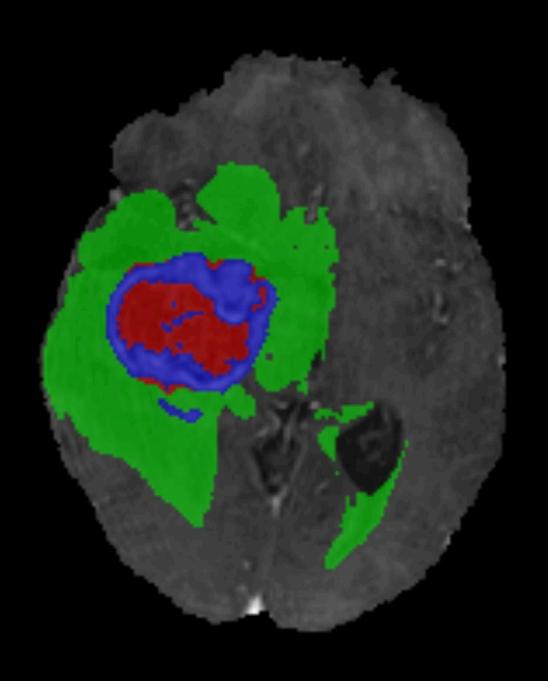
- The mean, μ , has shape: $n_classes \times n_pixels$;
- The covariance diagonal, D, is a diagonal matrix with $n_classes \times n_pixels$ diagonal elements;
- The covariance factor, P, is a rectangular matrix with shape: $(n_classes \times n_pixels) \times rank$.

Results

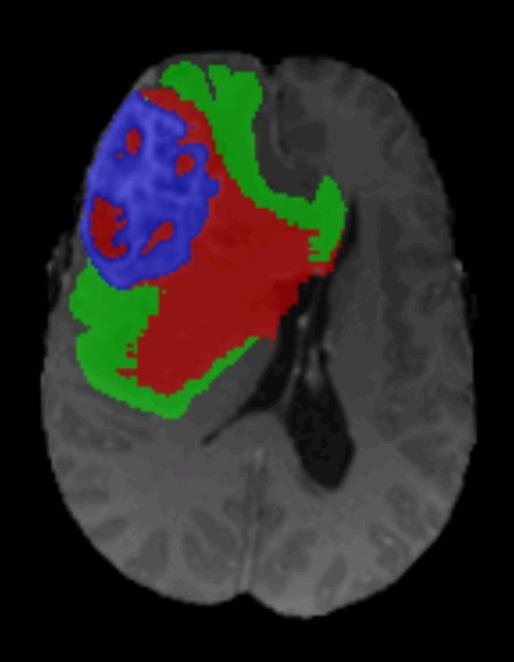


Brain tumour segmentation





Real time sample manipulation



Are the samples better than the mean?

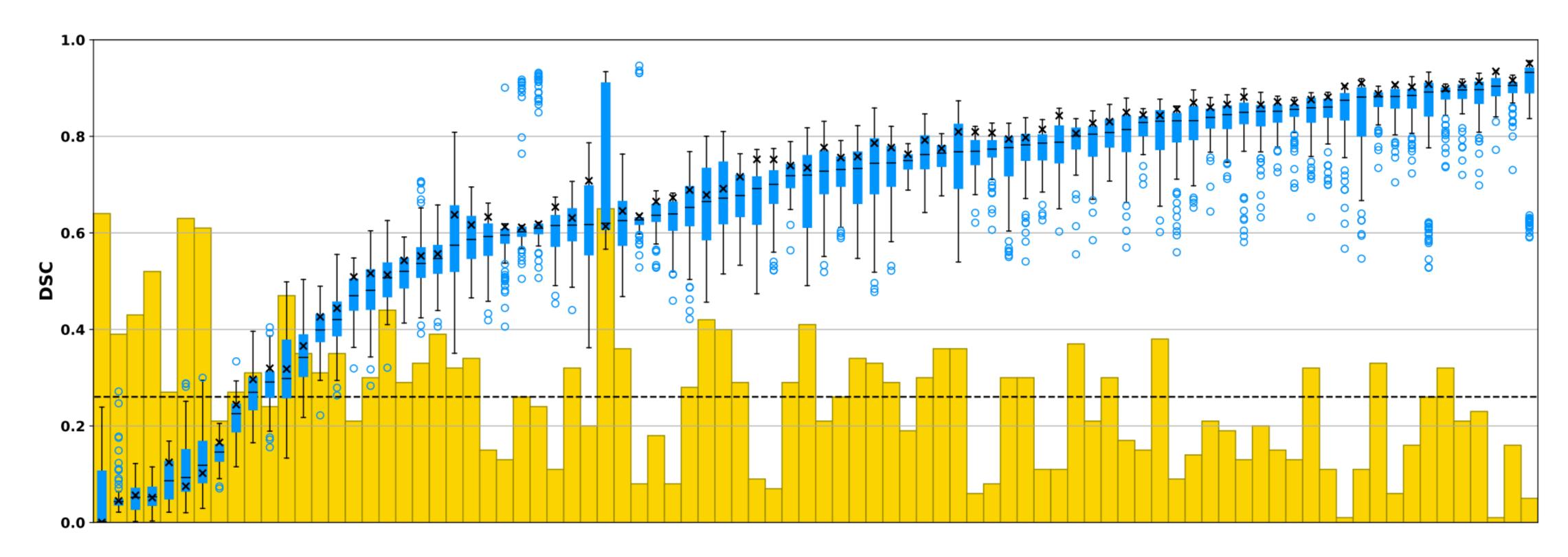
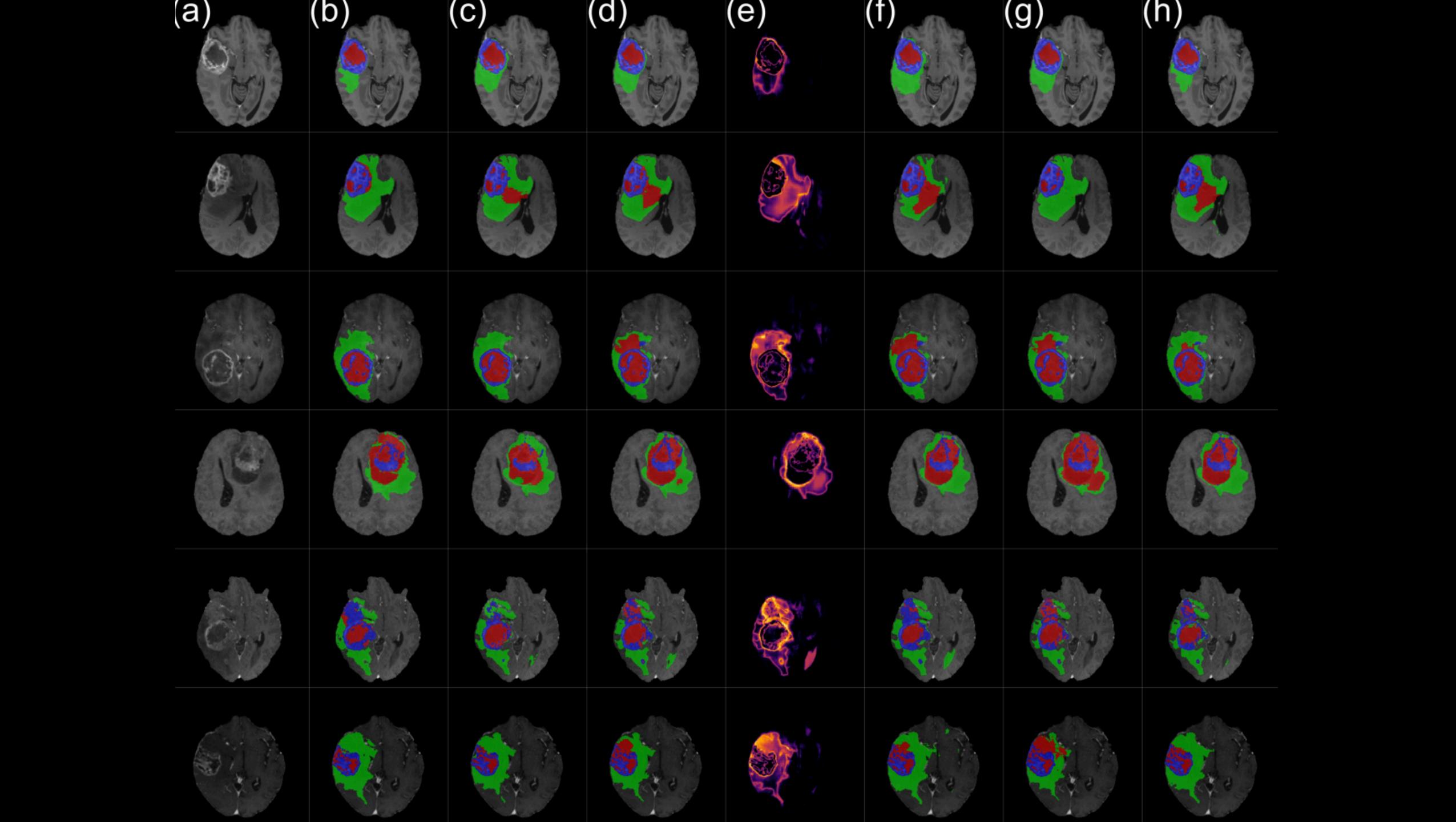


Figure 5: Distribution of sample average class DSC per case. The yellow bars denote the fraction of samples whose DSC is higher than the mean prediction, which is represented by a cross. The dashed line is the average fraction of samples better than the mean prediction (average height of the bars).



Lung nodule segmentation

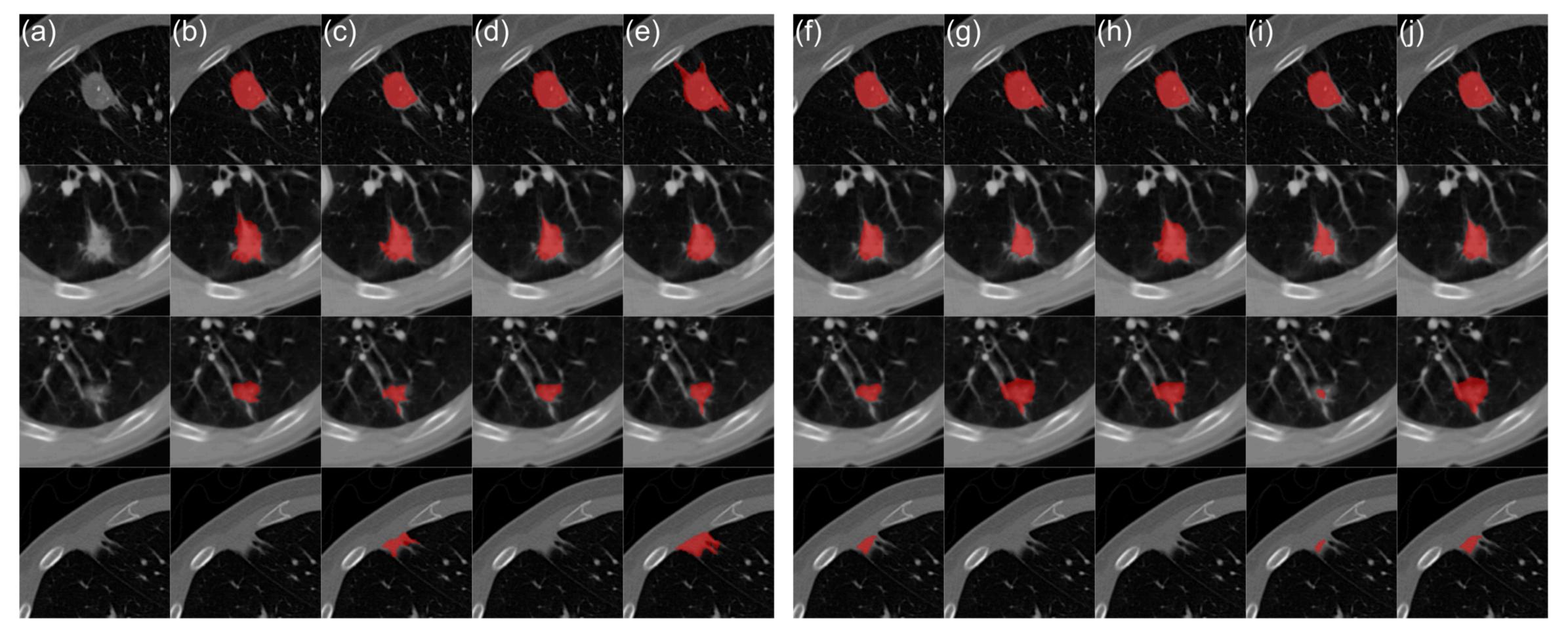


Figure 3: Qualitative results on the LIDC-IDRI dataset for the proposed model trained on four expert annotations: (a) CT image; (b-e) radiologist segmentations; (f) mean prediction; (g-j) samples.

model	trained on	$DSC\left(\%\right)\uparrow$	DSC_{nod} (%) \uparrow	$D^2_{GED} \downarrow$	sample diversity
deterministic U-Net probabilistic U-Net PHiSeg proposed (diagonal) proposed (low-rank)	set 0	37.5 ± 0.4 38.4 ± 0.4 39.1 ± 0.4 37.1 ± 0.4 40.7 ± 0.4	50.3 ± 0.4 57.2 ± 0.4 51.3 ± 0.5 51.2 ± 0.4 58.6 ± 0.4	0.698 ± 0.009 0.516 ± 0.007 0.456 ± 0.008 0.734 ± 0.009 0.365 ± 0.005	0.000 ± 0.000 0.290 ± 0.004 0.215 ± 0.003 0.001 ± 0.000 0.399 ± 0.004
deterministic U-Net probabilistic U-Net PHiSeg proposed (diagonal) proposed (low-rank)	all sets	35.9 ± 0.4 39.0 ± 0.4 33.8 ± 0.4 37.0 ± 0.4 43.6 ± 0.4	43.5 ± 0.5 50.6 ± 0.5 40.3 ± 0.5 46.2 ± 0.5 68.5 ± 0.3	0.607 ± 0.009 0.252 ± 0.004 0.224 ± 0.004 0.622 ± 0.009 0.225 ± 0.002	0.000 ± 0.000 0.469 ± 0.003 0.496 ± 0.003 0.007 ± 0.001 0.609 ± 0.002

Better predictive performance for the mean sample.

model	trained on	$DSC\left(\%\right)\uparrow$	DSC_{nod} (%) \uparrow	$D^2_{GED} \downarrow$	sample diversity
deterministic U-Net probabilistic U-Net PHiSeg proposed (diagonal) proposed (low-rank)	set 0	37.5 ± 0.4 38.4 ± 0.4 39.1 ± 0.4 37.1 ± 0.4 40.7 ± 0.4	57.2 ± 0.4 51.3 ± 0.5 51.2 ± 0.4	0.456 ± 0.008	0.000 ± 0.000 0.290 ± 0.004 0.215 ± 0.003 0.001 ± 0.000 0.399 ± 0.004
deterministic U-Net probabilistic U-Net PHiSeg proposed (diagonal) proposed (low-rank)	all sets	35.9 ± 0.4 39.0 ± 0.4 33.8 ± 0.4 37.0 ± 0.4 43.6 ± 0.4	40.3 ± 0.5 46.2 ± 0.5	0.607 ± 0.009 0.252 ± 0.004 0.224 ± 0.004 0.622 ± 0.009 0.225 ± 0.002	0.000 ± 0.000 0.469 ± 0.003 0.496 ± 0.003 0.007 ± 0.001 0.609 ± 0.002

Better distance to expert distribution when trained on only one expert.

model	trained on	$DSC\left(\%\right)\uparrow$	DSC_{nod} (%) \uparrow	$D^2_{GED} \downarrow$	sample diversity
deterministic U-Net probabilistic U-Net PHiSeg proposed (diagonal) proposed (low-rank)	set 0	37.5 ± 0.4 38.4 ± 0.4 39.1 ± 0.4 37.1 ± 0.4 40.7 ± 0.4	50.3 ± 0.4 57.2 ± 0.4 51.3 ± 0.5 51.2 ± 0.4 58.6 ± 0.4	0.698 ± 0.009 0.516 ± 0.007 0.456 ± 0.008 0.734 ± 0.009 0.365 ± 0.005	0.000 ± 0.000 0.290 ± 0.004 0.215 ± 0.003 0.001 ± 0.000 0.399 ± 0.004
deterministic U-Net probabilistic U-Net PHiSeg proposed (diagonal) proposed (low-rank)	all sets	35.9 ± 0.4 39.0 ± 0.4 33.8 ± 0.4 37.0 ± 0.4 43.6 ± 0.4	40.3 ± 0.5 46.2 ± 0.5	0.607 ± 0.009 0.252 ± 0.004 0.224 ± 0.004 0.622 ± 0.009 0.225 ± 0.002	0.000 ± 0.000 0.469 ± 0.003 0.496 ± 0.003 0.007 ± 0.001 0.609 ± 0.002

model	trained on	DSC (%) \uparrow	DSC_{nod} (%) \uparrow	$D^2_{GED} \downarrow$	sample diversity
deterministic U-Net probabilistic U-Net PHiSeg proposed (diagonal) proposed (low-rank)	set 0	37.5 ± 0.4 38.4 ± 0.4 39.1 ± 0.4 37.1 ± 0.4 40.7 ± 0.4	50.3 ± 0.4 57.2 ± 0.4 51.3 ± 0.5 51.2 ± 0.4 58.6 ± 0.4	0.698 ± 0.009 0.516 ± 0.007 0.456 ± 0.008 0.734 ± 0.009 0.365 ± 0.005	0.000 ± 0.000 0.290 ± 0.004 0.215 ± 0.003 0.001 ± 0.000 0.399 ± 0.004
deterministic U-Net probabilistic U-Net PHiSeg proposed (diagonal) proposed (low-rank)	all sets	35.9 ± 0.4 39.0 ± 0.4 33.8 ± 0.4 37.0 ± 0.4 43.6 ± 0.4		0.607 ± 0.009 0.252 ± 0.004 0.224 ± 0.004 0.622 ± 0.009 0.225 ± 0.002	0.000 ± 0.000 0.469 ± 0.003 0.496 ± 0.003 0.007 ± 0.001 0.609 ± 0.002

Equal or better distance to expert distribution when trained on all experts.

More diverse samples

model	trained on	$DSC\left(\% ight) \uparrow$	DSC_{nod} (%) \uparrow	$D^2_{GED}\downarrow$	sample diversity
deterministic U-Net probabilistic U-Net PHiSeg proposed (diagonal) proposed (low-rank)	set 0	37.5 ± 0.4 38.4 ± 0.4 39.1 ± 0.4 37.1 ± 0.4 40.7 ± 0.4	50.3 ± 0.4 57.2 ± 0.4 51.3 ± 0.5 51.2 ± 0.4 58.6 ± 0.4	0.698 ± 0.009 0.516 ± 0.007 0.456 ± 0.008 0.734 ± 0.009 0.365 ± 0.005	0.000 ± 0.000 0.290 ± 0.004 0.215 ± 0.003 0.001 ± 0.000 0.399 ± 0.004
deterministic U-Net probabilistic U-Net PHiSeg proposed (diagonal) proposed (low-rank)	all sets	35.9 ± 0.4 39.0 ± 0.4 33.8 ± 0.4 37.0 ± 0.4 43.6 ± 0.4		0.607 ± 0.009 0.252 ± 0.004 0.224 ± 0.004 0.622 ± 0.009 0.225 ± 0.002	0.000 ± 0.000 0.469 ± 0.003 0.496 ± 0.003 0.007 ± 0.001 0.609 ± 0.002

Algorithmic benefits over SOTA

- Infinitely many samples from one forward pass;
- No variational inference which requires tuning many regularisation hyper-parameters;
- Lightweight and flexible, enabling it to be used over any existing architecture, including 3D CNNs.

Demo

