Deep Learning



Notation

*e The input data X is a matrix with n rows and m columns;
* mis the number of examples in the dataset;
* nis the number of features;
* The labels y is an array with m columns;
* The labels can be 0 or 1 (binary classification);

. xiz) denotes the value of the first feature of the second example.



ogistic Regression

 Similar to the perceptron but has a probabilistic interpretation
of the output;

* Smooth activation function makes it a good building block for
neural networks;

« Easy take-off point to learn about deep learning.
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Loss function for one example (cross entropy function):
Ly, y) =—(ylog(y)+ (1 —y)log(1—-y))



Sigmoid activation function
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Cross-entropy loss function
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L(y,y)=—-(log(») + (1 —y)log(1-%))
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The loss is smaller when y and y are close to each other.



What if there are more than 1 example?

*e Yy becomes an array with the same shape of y;
* W maintains the same shape;
* b maintains the shape but must be broadcasted to all examples;

* The cost function is the average of the loss function over all examples:

m
1 . .
Jw,b) == £(y®,9®)
=1

* The cost function can be minimized via gradient descent to determine the
optimal values of W and b.



Gradient Descent

*e |nitialize W and b;

e for every step in range(max_steps):
* Calculate dW and db:

. qw = UWb)
ow
. gp = Wb

ab
 Update W and b:

e W=W —adW
e b:=b—adb
* The learning rate « and number of steps for which to train for
max_steps are hyper-parameters.



Calculating derivatives on 1 example

*e To calculate the derivatives dW and db we use the chain rule:

0Ly, @)y 1-y
da a 1-a
da
E—a(l—a)

dz is a real number

B 0L(y,a) B 0L(y,a) da B

dz 0z da 0z a=y




3 0L(y, a) B 0L(y,a) da 0z

dw dw, da 0z dw, = dzx
dW = [dzx; dzx, - dzx,]
0L(y, a 0L(y,a)dad
Ih - (y, @) _0L(y,a) Z 1

ob da 0z db



Calculating derivatives on m examples

*Since the cost function is a linear combination of the loss functions of
each example, so are its derivatives:
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Types of Gradient Descel

*e Batch Gradient Descent:
* Each iteration uses all m examples;
* Slow computation of each iteration;
* Decreases cost function at each iteration.

» Stochastic Gradient Descent (SGD):
* Each iteration uses only 1 example;
* Fast computation of each iteration;
* Does not always decrease cost at each iteration;

* Does not take advantage of vectorization (slower speed per example).

* Mini-batch gradient descent: (Use this one)
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* Each iteration uses only a subset of the total examples, a mini-batch;

* The mini-batch size is a hyper-parameter (e.g. 10, 100);
* Decreases cost function at most iterations;
» Takes advantage of vectorization.



Stochastic Gradient Descent Mini-Batch Gradient Descent



(Fully Connected) Neural Networks

l . . : : .
h Wl-[j] denotes the weight for input i and output j relative to layer L.

3 layers (input layer does not
count).

hidden layer 1 hidden layer 2 The hidden layers have 4 hidden
units each.

iInput layer



2-layer Neural Network

2]

L(y,y)




Forward pass
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Backpropagation

dz2l = A2l —y

(i”‘é] = #(ZZMA“] dbjé] — %Z}Zl dzﬁ] same as sum of columns np.sum(dz2, axis=1, keepdims=true)
dZ[l] = MVVIT(IZ [2] * g[l]’ (Z[l]) * is element wise product

1 1
dW[l] — —dZ[l]XT dbl ] == ;2721 le[]] same as sum of columns np.sum(dz1, axis=1, keepdims=true)



General case L-layer network

ozl = WlAL=1] 4 plI  4l0 = gllI(Z1)

dzW0 = w1l gz gz x is element wise product
dwll = Lgzma0-1" ~ym, dz}]

m
Except:

1. Inthe last layer dzLl = Altl —y
2. Inthe first layer Al =¥



Shapes

v Wl and dW U have the shape: (#outputs_units, #inputs_units);

* bl and db!Y have the shape (#outputs_units, 1):
« bl must be broadcasted to all examples in ZIU = wltlgli=1] 4 plil.

o ZI and AlY has the shape (#outputs_units, m).



Deep neural
networks learn
hierarchical feature
representations

output layer




Gradient Descent (2)

*e W must be initialized to random values close to zero to break
symmetry:
* For example drawn from a normal distribution with mean 0.0 and standard
deviation 1.0;
* b can be initialized to an array of zeros;

* A good choice of the learning rate « is crucial for learning:
e Typical values 0.1, 0.01, 0001,
* Choice depends on the problem at hand.

* Always scale your features to have zero mean and unit variance.



Activation Functions

* The gradient of the sigmoid function is close to zero when the
absolute value of the activations are large. This slows learning;

* The activation function of the hidden layers does not need to
be the sigmoid function;

* Other functions:
* Hyperbolic Tangent (Tanh);
 Rectified Linear Unit (Relu);
» Leaky Rectified Linear Unit (LeakyRelu);
« Parametric Rectified Linear Unit (PRelu);
* More.




Hyperbolic Tangent

et —e7 %

tanh(z) = P




Rectified Linear Unit (Relu)

Z, z>0
relu(z) = {0 7> 0




eaky

O is a fixed hyper-parameter (e.g. 0.01)

Rectified Linear Unit (

Z, z>0

leakyrelu(z) = {92 7 >0

eaky

Relu)



Parametric Rectified Linear Unit (PRelu)

Z, z>0

O is a trainable parameter (like the weights and biases)




Programming Frameworks

* You only have to calculate the forward pass, the frameworks
compute backpropagation and update the parameters
automatically;

* List of programming frameworks:
* Tensorflow;
* Theano;
* Keras;
» Caffe;
* Torch;
« And many more.




Training, validation and test sets

* Training set:
» Used to train the model;

 Validation set (aka development set):
« Used to tune the model’s parameters and architecture;
* Ensures you are not overfitting to the training set;

* Test set:
« Used to get a sense of the model’s real world performance;
* Ensures that you are not overfitting to the validation set;



How to split the data”

» Before deep learning (few examples ~1000):
 Train/Dev/Test: 60%/20%/20%
* Train/Dev: 70%/30%
« Use k-fold cross-validation

* In the deep learning era (a lot of examples ~1e6):
* Train/Dev/Test: 98%/1%/1%
* Train/Dev: 99%/1%



Bias and Variance
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Bayes

—rror and Human

 Bayes error:
* The theoretical lower limit for the error in any machine learning task;
« Hard or impossible to know most of the time;

 Human level performance:

* Best performance achieved by humans;

evel

Parformance

* [n tasks where humans are very good (e.g. image recognition) it can
be used as an approximation of Bayes error.



Low Bias

High Bias

Bias and variance are not opposites, you can have both high bias and high variance.

Low Variance High Variance Human Train error| Dev error |Test error Problems
error
1% 5% 5.2% 5.3% High bias
Q % 1% 1.1% 6.4% High variance

—

1% 5% 5.2% 10% High bias and
High variance

. 1% 1% 1.1% 1.2%

(O)c

Fig. 1 Graphical illustration of bias and variance.




Avoiding underfitting (high bias)

« Make sure you have chosen a good learning rate;

 Train a bigger (more complex model):
* Try adding more layers to the network;
* Try adding more hidden units to the layer;

* Different network architectures perform better for certain
applications:

« E.g. Convolutional Neural Networks for Computer Vision (see later
slides).



Avoiding overfitting in neural networks.

* Get more examples:
* More examples in the training set reduces overfitting;

* More examples in the development set makes it harder to overfit to
the validation (i.e. to tune your parameters with a few examples in
mind);

* L1 or L2 regularization;
* Dropout.
* More (e.g. data augmentation).



2 and L1 regularization (1)

e |2 regularization for L-layer network:

S 2
© JW,b) = 23, £(y©,50) + 23k W],

* The L2-norm of the weights is: ||W||22 =" w4

* Aisthe regularization constant, it is tuneable hyper-parameter that determines the importance of
the regularization term in the cost function.

* The optimization reduces the norm of the weights, some of the weights are close to zero,
which simplifies the network;

e L1 regularization for L-layer network :

* JW,b) = LR L(y®,90) + L3k W]
Wl = T lwil;

* Same as L2 regularization but also induces sparsity by forcing some of the weights to zero.



1 and L2 regularization (2)

*e Backpropagation:
. L2: dWll = (same as before) + %W[l]
* L1: dW!l = (same as before) + %sign(W[l])

* Nothing stops you from adding regularization on a layer by layer basis,
each one with its unique type and regularization constant. In this case
you must calculate the derivatives accordingly, or use a programming
framework.



Dropout

* During training randomly eliminate nodes from the network
with a given probability;
* Most common type “Inverted Dropout”:
« d = np.random.rand(a.shape[0], a.shape[1]) < keep_prob
« a = np.multiply(a, d)
« a=a / keep_prob

* Only apply during training!
« Backpropagation and prediction don’t change;

* Works because at each iteration of gradient descent you are
training a smaller network. The network can never rely on one
single node.




Improvements on Gradient Descent

» Gradient Descent with Momentum;
* RMSprop;
* Adam optimizer.



Gradient descent with momentum (1)

Initialize the moving averages vy and v, to matrices/arrays of zeros;

At each iteration of gradient descent:
* Vaw = Prvaw + (1 — B)dW
* Vap = P1vap + (1 — B1)db
[1is an hyper-parameter (usually 0.9 no need to tune it);

Bias correction (optional step not really necessary but more correct):
Vaw

L] v o

aw — t
1-p1

Vdb

1-B,"

The update step used the moving averages of the gradients instead of the gradients:
e W =W —-avyy,
* b=b—avy

* Vap =



Gradient descent with momentum (2)

« Makes gradient ¢
* Makes gradient ¢

* Makes gradient c

escent converge faster;
escent more robust to local minima and saddle points

escent more robust to hyper-parameter choices.

)



RMSprop (1)

Initialize the moving averages sgyy and s4, to matrices/arrays of zeros;
At each iteration of gradient descent:
* Saw = B2Saw + (1 — Br)dW?
* Sap = B2Sap + (1 — B)db?
f> is an hyper-parameter (usually 0.999 no need to tune it);
Bias correction (optional step)

The update step used the moving averages of the gradients instead of the
gradients:

e W=W—q-Z
Sdw
db
° b:b_
¢ Fa

Dampens oscillations.



Ignore Adagrad, Adadelta and NAG;

- SGD - SGD

= Momentum = Momentum
- NAG - NAG

- Adagrad - Adagrad
~ Adadelta - Adadelta
— RMsprop 4 — Rmsprop

1.0

0-5 1.0-1-0 -1.5



Adam optimizer

*e Combines momentum with RMSprop:
cW=W—a-%;

Sdw
ebh=>b—a«a

VUp .
VSab’
* 5 and [, are 0.9 and 0.999 respectively (no need to tune);

* Has become the deep learning standard.



Convolutional Neural
Networks
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Motivation
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 Suppose you want to build a cat classifier:
* |t outputs 1 if the picture is a cat and 0 otherwise.

* |If you have low resolution RGB images a fully connected neural
network might work fine, e.g. 64x64x3 = 12288 weights;

* If you have high resolution RGB images the number of
parameters increases exponentially, e.g. 1000x1000x3 = 3
million weights:

« This can very easily lead to overfitting, and very slow training;

* |n addition, different pixels of the image are not completely
different features;




Image Convolution (1)

a C
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kernel
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Image Convolution (2)
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Image Convolution (3)
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Image Convolution (4)
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Image Convolution (5)
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Image Convolution (6)
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And so on...




Valid Padding (no padding)

4x4



Same Padding (1)

0-10
x | -1] 5| -1
0O -1]0

Filter or
kernel

6X6



Same Padding (2)

*s In Same padding size output = size input;
* Input image has size nXn ;
* The convolution filter has size f X f;
* p is number of pixels to pad for in each direction;

* Then: n+2p—f+1=n(:)p=T

» f is usually odd, if f is even you need asymmetric padding.



Image Convolution

* Types of filters (kernels):
 Sharpen
 Blur
« Emboss
 Qutline
» Bottom Sobel
* Top Sobel
 Right Sobel
 Left Sobel
 Etc..



http://setosa.io/ev/image-kernels/
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Strided Convolutions (1)

Strided convolution with stride 2 in both directions
Patch size 3x3
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Strided Convolutions (2)
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Strided Convolutions (3)
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Strided Convolutions (4)
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Strided convolutions (5)

n+2p—f

*e ouput size = { + 1‘, where s is the stride;

e Strided convolutlons run faster than regular ones since they require
less operations;

» Useful for very high resolution images;



Convolutions with multiple input channels
(RGB images) (1)

3X3%3 4x4

6X6X3

The red 3 is the number of input channels



Convolutions with multiple input channels
(RGB images) (2)

ey [

3X3%3 4x4

6X6X3

The red 3 is the number of input channels



Convolutions with multiple outputs ...

6X6X3




http://cs231n.github.io/assets/conv-demo/index.html
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-xample

« Same padding;

* Input: 6x6 RGB image (6x6x3);
* Filters: twelve 3x3x3 filters;

e Qutput: twelve 6x6 images;

* The number of filters in each convolution layer is an hyper-
parameter you choose;



Convolution Layer (1)

* The are filters are learnt from data, not fixed hyper-
parameters;

* The filter (kernel) of the convolution is a patch made up of
weights that are trainable;
* The patch size is an hyper-parameter (e.g. 3x3, 5x5, 7x7);

* You must add biases and apply an activation function like in a
normal neural network;



Convolution Layer (2)

Filter or
kernel

z = relu(wja + wyb + wzc +wyud +wge +wgf +w,g + wgh + wgi + b)



Convolution Layer (3)

[ n "

relu + b

L /

activation = relu(wsa + w,b + wzc + wyd + wge + wgf + w,g + wgh + wol + b)



Convolution Layer (4)

« Each layer of the CNN can use more than one filter;
« Each filter has its own weights and biases;

* The convolution operation and the backpropagation are already
implemented in Tensorflow and other programming
frameworks, so we will skip the math of backpropagation;

* |If you have 10 3x3x3 filters you have 280 parameters
(10x(3x3x3+1)), regardless of the size of the image;



Notation of convolution layer [

of [l = filter size Input: ny = Uxn,, -xn 1]
plll = padding Output: nyxny, Uxn 1
] = stri [1=1] 4 2 [l _ £[l]
st = stride N _ |net " +2p-f
nylt = [F—2—=L 41

n Y = number of filters

[l] _ {nw[l_1]+2p[l]—f[l] + 1]

Ny <[]

Each filteris: flHx flUxn 1]

Activation: alll - nyldxn, Uxn LU Al > mxnyHxny, Hxn L
Weights: W — fllx flxn [=1xp 1

Biases: bl - 1x1x1xn,!



Convolution Neural Network (CNN)
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Useful Links

 http://cs231n.github.io/convolutional-networks/
 https://adeshpande3.github.io/adeshpandel.github.io/A-

Begmners Guide-To- Understanqu Convolutional-Neural-

Networks/
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https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

Stroke Lesion Segmentation
Prediction using Fully
Convolutional Neural Networks



Setup

*e Goal: To predict the outcome segmentation of a stroke lesion 90 days
after the stroke had occurred using only MRI data collected the day of
the stroke;

* Motivation: doctors can see the lesion just fine immediately after the
stroke, what is harder is to know how the lesion will evolve over time;

* Data: 43 patients: 3D images with 6 channels each, but with varying
spatial dimensions (width X height X depth X 6)

* The ground-truth segmentation used for training was done by
experts;

* Architecture: “V-Net” a FCNN used for 3D medical image.



Shape (x,y,z)

Count

(128, 128, 25)
(192, 192, 19)
(192, 192, 24)
(192, 192, 30)
(256, 256, 24)

10
17

Total

43
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Training

 Using TensorFlow and Google Cloud ML Engine to take
advantage of parallelizing training across multiple GPUs;

* The spatial dimensions of the images were not scaled to the
same size in order to avoid distortion, however, this means
SGD had to be used (train with one example per gradient
descent step);

 5-fold cross validation due to only having 43 examples;



—valuation Metrics

* Dice Coefficient (DC):

* The fraction of overlap between the ground-truth segmentation and
the prediction;

* A number between 0 and 1, being that 1 corresponds to a perfect
segmentation;

« Hausdorff Distance (HD):
* Measures the presence of outliers in the segmentation;

* Average Symmetric Surface Distance (ASSD):

* Measures the overall surface deformity between the ground-truth and
prediction.



0SS function (only for one example)

*e n denotes the voxel number and not example number (voxel = 3D
pixel);

* Cross entropy loss function:
#voxels

Cross entorpy = — rrov—r z —(y, log(y,) + (1 — y,) log(1 — 3,,))

n=1
* Dice Loss:
zz#volxelsy y\
n= nn

#voxels #voxels —
225y + X2

dice loss = —

* Qur loss function:
loss = cross entropy + dice loss



—volution of DC during training
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Results

Raw Prediction Post-Processed Mean Gain
DC 0.357 +0.216 0.370 = 0.215 3.662%
HD  30.823 +18.512 23.398 4 18.753 24.091%
ASSD 4426 4+ 3.546 3.722 + 3.389 15.895%

* Post Processing: remove any unconnected regions that had a
volume smaller than 50% of the largest volume.

* This is because stroke lesions have one core and surrounding
penumbra, usually there are not multiple unconnected
affected regions;
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Worst Case (DC = 0%)




Best Case (DC = 73%)
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