
Deep Learning

Notation
•

Logistic Regression
• Similar to the perceptron but has a probabilistic interpretation

of the output;
• Smooth activation function makes it a good building block for

neural networks;
• Easy take-off point to learn about deep learning.

Sigmoid activation function

Cross-entropy loss function
•

What if there are more than 1 example?
•

Gradient Descent
•

Calculating derivatives on 1 example
•

•

•

Types of Gradient Descent
•

(Fully Connected) Neural Networks
•

3 layers (input layer does not
count).
The hidden layers have 4 hidden
units each.

2-layer Neural Network

Forward pass
•

Backpropagation
•

General case L-layer network
•

Shapes
•

Why deep representations?

Gradient Descent (2)
•

Activation Functions
• The gradient of the sigmoid function is close to zero when the

absolute value of the activations are large. This slows learning;
• The activation function of the hidden layers does not need to

be the sigmoid function;
• Other functions:
• Hyperbolic Tangent (Tanh);
• Rectified Linear Unit (Relu);
• Leaky Rectified Linear Unit (LeakyRelu);
• Parametric Rectified Linear Unit (PRelu);
• More.

Hyperbolic Tangent

Rectified Linear Unit (Relu)

Leaky Rectified Linear Unit (LeakyRelu)

Parametric Rectified Linear Unit (PRelu)

Programming Frameworks
• You only have to calculate the forward pass, the frameworks

compute backpropagation and update the parameters
automatically;
• List of programming frameworks:
• Tensorflow;
• Theano;
• Keras;
• Caffe;
• Torch;
• And many more.

Training, validation and test sets
• Training set:
• Used to train the model;

• Validation set (aka development set):
• Used to tune the model’s parameters and architecture;
• Ensures you are not overfitting to the training set;

• Test set:
• Used to get a sense of the model’s real world performance;
• Ensures that you are not overfitting to the validation set;

How to split the data?
• Before deep learning (few examples ~1000):
• Train/Dev/Test: 	 	 60%/20%/20%
• Train/Dev: 	 	 70%/30%
• Use k-fold cross-validation

• In the deep learning era (a lot of examples ~1e6):
• Train/Dev/Test: 	 	 98%/1%/1%
• Train/Dev: 	 	 99%/1%

Bias and Variance

High bias -
underfitting

High variance -
overfitting

Good fit

Bayes Error and Human Level Performance

• Bayes error:
• The theoretical lower limit for the error in any machine learning task;
• Hard or impossible to know most of the time;

• Human level performance:
• Best performance achieved by humans;
• In tasks where humans are very good (e.g. image recognition) it can

be used as an approximation of Bayes error.

Bias and variance are not opposites, you can have both high bias and high variance.

Human
error

Train error Dev error Test error Problems

1% 5% 5.2% 5.3% High bias

1% 1% 1.1% 6.4% High variance

1% 5% 5.2% 10% High bias and
High variance

1% 1% 1.1% 1.2% -

Avoiding underfitting (high bias)
• Make sure you have chosen a good learning rate;
• Train a bigger (more complex model):
• Try adding more layers to the network;
• Try adding more hidden units to the layer;

• Different network architectures perform better for certain
applications:
• E.g. Convolutional Neural Networks for Computer Vision (see later

slides).

Avoiding overfitting in neural networks.
• Get more examples:
• More examples in the training set reduces overfitting;
• More examples in the development set makes it harder to overfit to

the validation (i.e. to tune your parameters with a few examples in
mind);

• L1 or L2 regularization;
• Dropout.
• More (e.g. data augmentation).

L2 and L1 regularization (1)
•

L1 and L2 regularization (2)
•

Dropout
• During training randomly eliminate nodes from the network

with a given probability;
• Most common type “Inverted Dropout”:

• d = np.random.rand(a.shape[0], a.shape[1]) < keep_prob
• a = np.multiply(a, d)
• a= a / keep_prob

• Only apply during training!
• Backpropagation and prediction don’t change;
• Works because at each iteration of gradient descent you are

training a smaller network. The network can never rely on one
single node.

Improvements on Gradient Descent
• Gradient Descent with Momentum;
• RMSprop;
• Adam optimizer.

Gradient descent with momentum (1)
•

Gradient descent with momentum (2)
• Makes gradient descent converge faster;
• Makes gradient descent more robust to local minima and saddle points;
• Makes gradient descent more robust to hyper-parameter choices.

RMSprop (1)
•

Ignore Adagrad, Adadelta and NAG;

Adam optimizer
•

Convolutional Neural
Networks

Motivation
• Suppose you want to build a cat classifier:
• It outputs 1 if the picture is a cat and 0 otherwise.

• If you have low resolution RGB images a fully connected neural
network might work fine, e.g. 64x64x3 = 12288 weights;
• If you have high resolution RGB images the number of

parameters increases exponentially, e.g. 1000x1000x3 = 3
million weights:
• This can very easily lead to overfitting, and very slow training;

• In addition, different pixels of the image are not completely
different features;

Image Convolution (1)

a b c

d e f

g h i
0 -1 0

-1 5 -1

0 -1 0

z

Filter or
kernel

Image Convolution (2)

1 2 4 1 0 2

0 1 0 0 1 1

1 0 3 2 3 0

4 3 4 1 0 1

2 4 1 1 2 0

4 2 5 2 6 4

0 -1 0

-1 5 -1

0 -1 0

3

Filter or
kernel

Image Convolution (3)

1 2 4 1 0 2

0 1 0 0 1 1

1 0 3 2 3 0

4 3 4 1 0 1

2 4 1 1 2 0

4 2 5 2 6 4

0 -1 0

-1 5 -1

0 -1 0

3 -8

Filter or
kernel

Image Convolution (4)

1 2 4 1 0 2

0 1 0 0 1 1

1 0 3 2 3 0

4 3 4 1 0 1

2 4 1 1 2 0

4 2 5 2 6 4

0 -1 0

-1 5 -1

0 -1 0

3 -8 -4

Filter or
kernel

Image Convolution (5)

1 2 4 1 0 2

0 1 0 0 1 1

1 0 3 2 3 0

4 3 4 1 0 1

2 4 1 1 2 0

4 2 5 2 6 4

0 -1 0

-1 5 -1

0 -1 0

3 -8 -4 1

Filter or
kernel

Image Convolution (6)

1 2 4 1 0 2

0 1 0 0 1 1

1 0 3 2 3 0

4 3 4 1 0 1

2 4 1 1 2 0

4 2 5 2 6 4

0 -1 0

-1 5 -1

0 -1 0

3 -8 -4 1

-8

Filter or
kernel

And so on…

Valid Padding (no padding)

1 2 4 1 0 2

0 1 0 0 1 1

1 0 3 2 3 0

4 3 4 1 0 1

2 4 1 1 2 0

4 2 5 2 6 4

0 -1 0

-1 5 -1

0 -1 0

Filter or
kernel

Same Padding (1)

0 0 0 0 0 0 0 0

0 1 2 4 1 0 2 0

0 0 1 0 0 1 1 0

0 1 0 3 2 3 0 0

0 4 3 4 1 0 1 0

0 2 4 1 1 2 0 0

0 4 2 5 2 6 4 0

0 0 0 0 0 0 0 0

0 -1 0

-1 5 -1

0 -1 0

Filter or
kernel

Same Padding (2)
•

Image Convolution
• Types of filters (kernels):
• Sharpen
• Blur
• Emboss
• Outline
• Bottom Sobel
• Top Sobel
• Right Sobel
• Left Sobel
• Etc..

http://setosa.io/ev/image-kernels/

http://setosa.io/ev/image-kernels/
http://setosa.io/ev/image-kernels/
http://setosa.io/ev/image-kernels/
http://setosa.io/ev/image-kernels/
http://setosa.io/ev/image-kernels/

Strided Convolutions (1)

0 0 0 0 0 0 0

0 1 2 4 1 2 0

0 0 1 0 0 1 0

0 1 0 3 2 0 0

0 2 4 1 1 0 0

0 4 2 5 2 4 0

0 0 0 0 0 0 0

0 -1 0

-1 5 -1

0 -1 0

3

Filter or
kernel

Strided convolution with stride 2 in both directions
Patch size 3x3

Strided Convolutions (2)

0 0 0 0 0 0 0

0 1 2 4 1 2 0

0 0 1 0 0 1 0

0 1 0 3 2 0 0

0 2 4 1 1 0 0

0 4 2 5 2 4 0

0 0 0 0 0 0 0

0 -1 0

-1 5 -1

0 -1 0

3 17

Filter or
kernel

Strided Convolutions (3)

0 0 0 0 0 0 0

0 1 2 4 1 2 0

0 0 1 0 0 1 0

0 1 0 3 2 0 0

0 2 4 1 1 0 0

0 4 2 5 2 4 0

0 0 0 0 0 0 0

0 -1 0

-1 5 -1

0 -1 0

3 17 8

Filter or
kernel

Strided Convolutions (4)

0 0 0 0 0 0 0

0 1 2 4 1 2 0

0 0 1 0 0 1 0

0 1 0 3 2 0 0

0 2 4 1 1 0 0

0 4 2 5 2 4 0

0 0 0 0 0 0 0

0 -1 0

-1 5 -1

0 -1 0

3 17 8

3

Filter or
kernel

And so on…

Strided convolutions (5)
•

Convolutions with multiple input channels
(RGB images) (1)

The red 3 is the number of input channels

Convolutions with multiple input channels
(RGB images) (2)

The red 3 is the number of input channels

Convolutions with multiple outputs

http://cs231n.github.io/assets/conv-demo/index.html

http://cs231n.github.io/assets/conv-demo/index.html
http://cs231n.github.io/assets/conv-demo/index.html

Example
• Same padding;
• Input: 	 6x6 RGB image (6x6x3);
• Filters:	 twelve 3x3x3 filters;
• Output:	 twelve 6x6 images;
• The number of filters in each convolution layer is an hyper-

parameter you choose;

Convolution Layer (1)
• The are filters are learnt from data, not fixed hyper-

parameters;
• The filter (kernel) of the convolution is a patch made up of

weights that are trainable;
• The patch size is an hyper-parameter (e.g. 3x3, 5x5, 7x7);

• You must add biases and apply an activation function like in a
normal neural network;

Convolution Layer (2)

a b c

d e f

g h i

z

Filter or
kernel

Convolution Layer (3)

z

Convolution Layer (4)
• Each layer of the CNN can use more than one filter;
• Each filter has its own weights and biases;
• The convolution operation and the backpropagation are already

implemented in Tensorflow and other programming
frameworks, so we will skip the math of backpropagation;
• If you have 10 3x3x3 filters you have 280 parameters

(10x(3x3x3+1)), regardless of the size of the image;

•

Convolution Neural Network (CNN)

Fully Convolutional Neural Network (FCNN)

Useful Links
• http://cs231n.github.io/convolutional-networks/
• https://adeshpande3.github.io/adeshpande3.github.io/A-

Beginner's-Guide-To-Understanding-Convolutional-Neural-
Networks/

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

Stroke Lesion Segmentation
Prediction using Fully

Convolutional Neural Networks

Setup
•

Training
• Using TensorFlow and Google Cloud ML Engine to take

advantage of parallelizing training across multiple GPUs;
• The spatial dimensions of the images were not scaled to the

same size in order to avoid distortion, however, this means
SGD had to be used (train with one example per gradient
descent step);
• 5-fold cross validation due to only having 43 examples;

Evaluation Metrics
• Dice Coefficient (DC):
• The fraction of overlap between the ground-truth segmentation and

the prediction;
• A number between 0 and 1, being that 1 corresponds to a perfect

segmentation;

• Hausdorff Distance (HD):
• Measures the presence of outliers in the segmentation;

• Average Symmetric Surface Distance (ASSD):
• Measures the overall surface deformity between the ground-truth and

prediction.

Loss function (only for one example)
•

Evolution of DC during training

Results

• Post Processing: remove any unconnected regions that had a
volume smaller than 50% of the largest volume.
• This is because stroke lesions have one core and surrounding

penumbra, usually there are not multiple unconnected
affected regions;

Median Case (DC = 43%)

ground-truth prediction

Worst Case (DC = 0%)

ground-truth prediction

Best Case (DC = 73%)

ground-truth prediction

