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Motivation
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Image Counterfactuals
Motivation

• Counterfactuals can be useful for explainability, interpretability fairness and 
data-augmentation;


• To generate counterfactuals we must know the data’s generative model aka 
the mechanism;


• When the true mechanism is not known we can estimate an approximation 
from data;


• In the case of images, the true mechanism is usually not available;


• Additionally, deep generative models are essential to estimate image 
mechanisms due to their complexity.
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Measuring soundness of approximate counterfactuals
Motivation

• We will see that in general deep generative models are only able approximate 
causal models leading;


• Approximate models lead to approximate estimates for causal effects and 
counterfactuals;


• Many approaches have been proposed for approximate counterfactual 
inference in images;


• Less work has been done on evaluating the quality of these approximations;


• This is what our work focuses on.
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Counterfactuals (1)
Background

• Consider a model , where  is a mechanism that generates an 
observation  from its endogenous causes (parents) , and its exogenous 
causes .


• A counterfactual is computed in three steps:


1. Abduction: calculate  by inverting the mechanism ;


2. Action: intervene on the parents ;


3. Prediction: propagate the effect through the SCM .

x = g(ϵ, pa) g( ⋅ )
x pa

ϵ

p(ϵ |x, pa) ϵ = g−1(x, pa)

Pa := pa*

x* = g(ϵ, pa*)
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Counterfactuals (2)
Background
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ϵx, ϵy, ϵz ∼ p(ϵx, ϵy, ϵz |x, y, z)

p(z |x, do(y), ϵx, ϵy, ϵz) = ?
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Model identifiability
Background

• Assume  is a distribution of some random variable ,  is its parameter 
that takes values in some parameter space  . Then, if  satisfies

 , we say that  is identifiable 
w.r.t.  on ;


• In simple terms, different model parameters must result in different 
observational distributions.

Pθ(X) X θ
Ωθ Pθ(X)

pθ1
(X) ≠ pθ2

(X) ⟺ θ1 ≠ θ2 ∀ θ1, θ2 ∈ Ωθ Pθ
θ Ωθ
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Model identifiability in deep models (1)
Background

• Deep “causal” generative models are simply deep latent generative models 
where the latent variables in the model take the role of the exogenous noise;


• The deep mechanism  is coupled with a deep inference model 
;


• Different model types (e.g. VAEs, GANs, generative flows, diffusion models) 
will have different choices on how this idea is implemented but the gist is the 
same.

x = g(ϵ, pa)
ϵ = q(x, pa)
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Model identifiability in deep models (2)
Background

• In the general case, deep models are not identifiable because there are 
multiple solutions for  that result in same observational distribution 

  (Locatello 2020);


• This makes abduction is impossible since  is not unique. We can 
arbitrarily transform , and, as long as we change the parameters , we can 
recover the same observational distribution;

θ
pθ(x |ϵ, pa)

p(ϵ |x, pa)
ϵ θ
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Model identifiability in deep models (3)
Background

• Even if the model was identifiable, the true model is only guaranteed to be 
recovered in the limit of infinite data;


• Deep causal models are thus usually only deep approximate causal models;


• We propose measuring the quality of these approximations.
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Model identifiability in deep models (3)
Background

• Deep causal models are thus not really causal and are only approximating 
causal models;


• We shift
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Counterfactual as functions
Methods

• Computationally we can write the three step counterfactual process in one 
single functional assignment;


• The 3 step process 


1.  


2.  


3.  


• becomes , where 

ϵ = abduct(x, pa)

Pa := pa*

x* = g(ϵ, pa*)

x* = f(x, pa, pa*) f ∼ Pf
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Counterfactual axioms
Methods

• The soundness theorem states that the properties of composition, 
effectiveness and reversibility hold true in all causal models (Galles & Pearl, 
1998). The completeness theorem states that these properties are complete 
(Halpern, 1998);


• Composition, effectiveness and reversibility are the necessary and sufficient 
properties of counterfactuals in any causal model;


• Evaluating these properties is possible for approximate counterfactuals.
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Composition
• Intervening on a variable to have the value it would otherwise have without 

the intervention will not affect other variables in the system. 


• This implies the existence of a null intervention  since if 
, then  is not affected.

f(x, pa, pa) = x
pa = pa* x

f(x, pa = (◼,1), pa* = (◼,1))

x x*
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Measuring composition
• To measure composition we can use image distance metrics;


• Given a distance metric , such as the  distance, an observation  
with parents  and a functional power , we can measure composition as:


.


• For an ideal model this quantity will always be zero regardless of the number 
of times we apply .

dX( ⋅ , ⋅ ) l1 x
pa m

composition(m)(x, pa) := dX(x, ̂f (m)(x, pa, pa))

f
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Effectiveness
• Intervening on a variable to have a specific value will cause the variable to 

take that value. 


• Suppose  is an oracle function that returns the parents of a variable, 
then we have the following equality:


Pa( ⋅ )

Pa( f(x, pa, pa*)) = pa*

f(x, pa = (◼,1), pa* = (◼,1))

x x*

Pa(x*) = (red,1)21



Measuring effectiveness (1)
• Unlike composition, measuring effectiveness is not easy;


• We would like to have an oracle function  which returns the value of 
the parent  given the observation; 


• In the absence of this function we approximate it using regressors or 
classifiers trained from data;


• We must beware that this approximate oracle function is susceptible to 
confounding of effects and take appropriate measures.

Pak( ⋅ )
pak

Pa(x*) = (red,1)22



Measuring effectiveness (2)
• We measure effectiveness individually for each parent by creating a pseudo-

oracle function , which returns the value of the parent  given the 
observation; 


• To independently measure how well the effect of each parent is modelled, we 
measure effectiveness after applying partial counterfactual functions:

;


• Using an appropriate distance metric , we measure effectiveness for 
each parent as:


.

̂Pak ( ⋅ ) pak

pa* = pa𝒦∖k ∪ {pak}

dk( ⋅ , ⋅ )

effectivenessk(x, pa) := dk( ̂Pak ( ̂f(x, pa, pa*)), pak)

Pa(x*) = (red,1)23



Reversibility (1)
• If setting a variable X to a value x results in a value y for a variable Y, and 

setting Y to a value y results in a value x for X, then X and Y will take the 
values x and y. 


• In other words, reversibility prevents the existence of feedback loops;


• In Markovian SCMs, reversibility follows trivially from composition.
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Reversibility (2)
• The mapping between the observation and the counterfactual is deterministic 

for invertible mechanisms.

f(x, pa = (◼,1), pa* = (◼,1))

x*

f(x*, pa = (◼,1), pa* = (◼,1))

x
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Measuring reversibility
• Like with composition, we can measure reversibility using image distance 

metrics (for invertible mechanisms);


• Setting , given a distance metric 
, such as the  distance, an observation  with parents  and a 

functional power , we can measure reversibility as


.


• For an ideal model this quantity will always be zero regardless of the number 
of times we apply .

̂p(x, pa, pa*) = ̂f( ̂f(x, pa, pa*), pa*, pa)
dX( ⋅ , ⋅ ) l1 x pa

m

reversibility(m)(x, pa, pa*) := dX(x, ̂p(m)(x, pa, pa*))

p
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Why measure soundness
Methods

• Based on these properties we can measure how far our approximate model is 
from being truly causal;


• In relation to deep models, we can:


• compare models without explicit likelihood (GANs);


• compare models whose performance is disconnected from likelihood, since 
deep latent variable models can assign arbitrarily high likelihoods to OOD 
samples (Nalisnick2018).
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Experiments and results
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Deep generative models as approximate counterfactual functions
Experiments and results

• Any conditional deep latent generative model can be framed as an 
approximate counterfactual function of the form ;


• In this work we look at conditionals variational auto-encoders (VAEs) and 
generative adversarial networks (GANs).

x* = ̂fθ(x, pa, pa*)
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Conditional VAE
Experiments and results

,


where  is the approximate latent posterior distribution 
parameterised by a neural network encoder,  is the conditional 
observational posterior distribution parameterised by a neural network 
decoder, and  is the latent prior.


Counterfactuals: 1.  2.  3. 


Or rewrite as  where 

ELBOβ = 𝔼q(z|x,pa)(log pω(x |z, pa)) − βDKL(q(z |x, pa) | |p(z))

qθ(z |x, pa)
pω(x |z, pa)

p(z)

z ∼ qθ(z |x, pa) Pa := pa* x* ∼ pω(x* |z, pa*)

x* = ̂fθ,ω(x, pa, pa*) ̂f ∼ Pz( ̂f )
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Conditional GAN with composition constraint
Experiments and results




Where the conditional generator  is a neural network 
approximating the counterfactual function directly.


We introduce an additional constraint on the generator to preserve identity 
(composition).

F(θ, ω) = 𝔼x,pa∼Pdo(x,pa)[log Dω(x, pa)]

−𝔼x, pa ∼ Psrc(x, pa)
pak ∼ P(pak)

[log(1 − Dω( ̂fθ(x, pa, pa*), pa))]

+𝔼x,pa∼Psrc(x,pa)dX(x, ̂f(x, pa, pa))
̂fθ(x, pa, pa*)
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Colour MNIST (1)
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Colour MNIST (2)
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Colour MNIST (3)
Experiments and results

• The goal of the experiment is to see how we can use the derived soundness 
metrics to compare different models and scenarios visually as well as 
numerically;


• For demonstration purposes we compare two extreme cases:


1. A de-biased model: Normal VAE on the confounded scenario w/ full 
support and a simulated intervention;


2. A biased model: Normal VAE on the confounded scenario w/o full support 
and no simulated intervention.
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Colour MNIST composition

De-biased model Biased model
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Colour MNIST digit effectiveness

De-biased model Biased model
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Colour MNIST hue effectiveness

De-biased model Biased model
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Colour MNIST digit reversibility

De-biased model Biased model
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Colour MNIST hue reversibility

De-biased model Biased model
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Colour MNIST full results
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3D Shapes
Experiments and results

• Procedurally generated images from 6 parents:


1. Object hue;


2. Object shape;


3. Object size;


4. Object rotation angle;


5. Wall hue;


6. Floor hue.


• In theory, there is no exogenous noise, image is fully determined by parents.
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3D Shapes (object shape)

VAE GAN
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3D Shapes (object hue)

VAE GAN

43

do_
null do_hue do_

null do_hue



CELEB-A HQ
Experiments and results

• Deep hierarchical VAE with 42 latent variables;


• Counterfactuals can be produced by abducting all latent variables or only a 
subset;


• Instead of abducting variables we can sample from the exogenous noise 
distribution (technically not a “real” counterfactual);


• We see a trade-off between obeying the counterfactual conditioning and 
preserving subject identity.
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CELEB-A HQ smiling counterfactuals

42 latents 8 latents45

do_null invert_smile do_null invert_smile



42 latents 8 latents46

CELEB-A HQ eye-glasses counterfactuals
do_null invert_eyeglasses do_null invert_eyeglasses



CELEB-A HQ trade-off (1)
Experiments and results

• We see a trade-off between obeying the counterfactual conditioning and 
preserving subject identity;


• In other words, there is a trade-off between composition and effectiveness for 
these two models.
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CELEB-A HQ trade-off (2)
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• The axioms of composition, effectiveness and reversibility provide a 
theoretical grounded manner of evaluating and comparing counterfactual 
image models;


• The axioms lead us to a set of soundness metrics which allow to compare 
approximate causal models with each other and against an unavailable ideal 
model;

Conclusion
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Thank you
Questions?
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