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Chairperson: Doctor José Eduardo Charters Ribeiro da Cunha Sanguino
Supervisor: Doctor António José Castelo Branco Rodrigues
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Abstract

With the current increase in network traffic in radio networks, it is now more important than ever to

manage this traffic efficiently in order to utilise the available network resources intelligently. The goal of

this thesis is to provide means for the operators to optimise their networks regarding the management

of load across the network.

This thesis proposes a two part approach to load management, an autonomous load balancing

algorithm in conjunction with a traffic forecasting methodology.

The proposed load balancing algorithm works in closed loop where each cell measures its load and

its neighbors load in order to adjust its handover parameters to offload traffic to other cells. Several sim-

ulations were run in order to validate the concept, the utilisation of this method decreased the average

number of unsatisfied users in a network up to 4%, depending on the network configuration. The simu-

lations were run using the MATLAB Vienna LTE System Level Simulator [1], which was heavily modified

for this work.

The forecasting tools and methodologies discussed in this work were mostly taken from the field of

economics and were shown to work extremely well when used to forecast network traffic, whether it be

data or voice. Some of the proposed techniques were shown to predict network traffic two months in

advance with a median error across 86 cells of just 14%.

This approach shows the potential of reducing the amount of wasted network resources and increase

savings for the operator.
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Resumo

Com o atual aumento do tráfego nas redes de telecomunicações, é hoje mais importante que nunca

gerir este tráfego de forma eficiente de maneira a usar os recursos existentes na rede inteligentemente.

Este trabalho tem como objetivo apresentar formas de os operadores móveis otimizarem as suas redes

no que diz respeito à gestão de carga na rede.

Este tese propõe duas metodologias complementares de gestão de tráfego, um algoritmo autónomo

de balanceamento de carga e um conjunto de ferramentas e métodos para previsão de tráfego.

O algoritmo de balanceamento de carga proposto funciona em malha fechada, em que cada célula

mede a sua própria carga assim como a carga das suas vizinhas de forma ajustar os parâmetros de

handover, para descarregar tráfego excessivo para outras células. Foram corridas várias simulações

para validar este conceito. Este método provou ser capaz de reduzir o número médio de utilizadores

descontentes na rede até 4% dependendo da configuração da rede. As simulações foram corridas

usando o Vienna LTE System Level Simulator [1] programado em MATLAB. Este simulador foi severa-

mente modificado para os propósitos deste trabalho.

As ferramentas e métodos de previsão descritos neste trabalho foram maioritariamente retirados

da área de economia, contudo mostraram funcionar extremamente bem no contexto da previsão do

tráfego numa rede móvel, seja dados ou voz. Algumas das técnicas propostas mostraram ser capazes

de prever o tráfego na rede com dois meses de antecedência com erro mediano referente a 86 células

de apenas 14%.

Ambas as metodologias mostraram potencial para reduzir o desperdı́cio de recursos na rede e

aumentar a poupança para o operador.

Palavras Chave

LTE; SON; Balanceamento de Carga; Previsão de Tráfego.
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This chapter is the introduction and aims to give an overview of the presented work. It includes the

context and motivation under which the work was developed, the objectives of said work and the general

structure of the thesis.

1.1 Motivation

Global mobile data traffic and mobile subscriptions are forecasted to grow exponentially over the next

couple of years [2, 3], this growth is predicted to particularly focus on traffic generated by smartphones

which are very mobile devices. As a result, it is now more important than ever to manage network traffic,

or load, intelligently and efficiently in order to get the best performance out of a network. Managing the

already available network resources efficiently and increasing the network capacity to cope with new

traffic in an intelligent way is key to avoid poor network performance, while maintaining the costs of

expanding the network down.

It is possible to manage load preemptively or reactively. To manage traffic preemptively it is nec-

essary to forecast the traffic behaviour in the future. This allows measures to be taken in advance to

deal with future traffic fluctuations. Managing traffic reactively leads to the concept of Self Organising

Networks (SONs) which are networks capable of managing themselves autonomously with little or no

human intervention, resulting in less overhead costs for telecommunication companies and better net-

work performances. In the context of load balancing it is possible to develop solutions that fall under

the category of SONs and therefore are capable of adapting to the network’s current load configuration

without human input.

1.2 Objectives

This thesis’ objective is twofold:

• To address the problem of load balancing in a SON context by proposing a real-time adaptive load

balancing algorithm which minimises the number of unsatisfied users in the network;

• To tackle the problem of network traffic forecasting by employing time series analysis and model

fitting to past traffic data in order to predict future traffic.

These two approaches to managing traffic can and should be used together in order to improve

network performance on a short-term and mid-to-long-term time scale. For example, forecasting can

be used to determine when it will be necessary to expand the network by purchasing more network

resources, whilst load balancing can be used to make the currently available resources last longer,

since they are being managed more cleverly.
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This work also aims to validate and test the proposed load balancing algorithm under different sce-

narios. To do this, several simulations scenarios were created and simulated to establish the algorithm’s

behaviour with changing conditions.

1.3 Structure

The work is divided into three main chapters. Chapter 2 gives an overview of the State of Art for the

different technologies over which the work in Chapters 3 and 4 focuses. These technologies include:

• Third Generation (3G) and Fourth Generation (4G) radio network architectures and respective

Radio Access Technologies (RATs);

• Mobility management in 3G and 4G networks;

• Current load balancing algorithms;

• Current time series analysis and forecasting methods.

Chapter 3 proposes a load balancing algorithm that works in the context on SONs as well as simula-

tion results for different scenarios, which validate the algorithm’s performance when compared with the

case where no load balancing is used.

Chapter 4 presents the results for the application of the forecasting methods discussed in Chapter 2

to the traffic generated by several cells in a network. In addition, this chapter also includes the treatment

of special cases, such as periodic traffic hotspots, and how to apply the presented forecasting methods

in these situations.

1.4 Publications

There was one paper written in the context of this work, the paper is titled “Balanceamento de Carga

em Redes LTE SON” and was submitted to the 10th congress of the Portuguese Committee of Union

Radio-Scientific Internationale (URSI), which will take place in Lisbon, Portugal on 18th of November of

2016.
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2.1 Introduction

This chapter aims to give the scientific and technical background necessary to understand the work

developed in Chapters 3 and 4. Section 2.2 gives an overview of the Universal Mobile Telecommuni-

cations System (UMTS) network and Section 2.3 gives an overview of the Long Term Evolution (LTE)

network. Section 2.4 is an exposure of the mobility procedures for LTE and UMTS, and Section 2.5 is

a review of some of the load balancing algorithms currently in existence. Lastly, Section 2.6 gives an

introduction to time series modelling and forecasting.

2.2 UMTS

UMTS is a term used to describe the set of third generation radio technologies developed within the

3rd Generation Partnership Project (3GPP) [4].

UMTS introduced the original Wideband Code Division Multiple Access (W-CDMA) scheme which

is a radio technology used to provide multiple access to the network’s resources. This scheme initially

used paired or unpaired 5 MHz wide channels in a globally agreed bandwidth around a 2 GHz carrier

frequency. Nowadays other frequency bands are also used.

An UMTS network supports both circuit switched and packet switched connections. W-CDMA was

specified in Release 99 and Release 4 of the specifications. Release 5 and 6 saw the introduction of

High Speed Packet Access (HSPA) along with some changes in the architecture of the Core Network

(CN). These releases significantly improved the bit-rates of packet switched applications.

2.2.1 UMTS network architecture

This section is heavily based on [5].

The UMTS network architecture is divided into three components, the User Equipment (UE), the

UMTS Terrestrial RAN (UTRAN) and the CN.

The UE is the interface the subscriber uses to communicate with the UTRAN. The UTRAN is the

radio component of the network which connects the UEs to the CN. The CN is responsible for switching

and routing calls and data within the network as well as to and from the external networks. Each of these

components is made of a number of logical network elements with defined functionalities.

One UMTS network can be composed of several sub-networks called Public Land Mobile Networks

(PLMNs), each of these sub-networks contains all the elements required for a UMTS network and there-

fore one PLMN is enough to have an UMTS network.

The architecture of a PLMN is shown in Figure 2.1.

The description of the different elements that make up a PLMN is given below.
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Figure 2.1: PLMN architecture [5].

The UE has two components:

• Mobile Equipment (ME): the radio equipment used to communicate;

• UMTS Subscriber Identity (USIM): the smart-card that uniquely identifies the user and is used for

user authentication and encryption of data.

The elements of the UTRAN are:

• Node B: the base station that connects the UE to the UTRAN via an Uu interface, it also participates

in managing the radio link’s resources (i.e Handovers);

• Radio Network Controller (RNC): an element that manages the radio resources of all the NodeBs

connected to it. It is the service access point for the services provided by the UTRAN to the CN.

The elements of the CN are:

• Home Location Register (HLR): the database that stores all of the users’ service profiles for a

given home system. Every user has one and only one home system;

The user’s service profile contains information regarding the services that are provided by the

network to the user, for example the allowed services of a given user (i.e. voice calls, SMS, data,

etc...). The user service profile is created when a new user subscribes to the network and is only

deleted when the subscription is cancelled. The HLR also stores the current user location at the

level of the MSC/VLR and S-GSN which is used to reroute incoming connections to another PLMN

if the user is outside its home system;

• Mobile Services Switching Centre (MSC) and Visitor Location Register (VLR): the switch (MSC)

and database (VLR) that serve the UE in its current location for circuit switched services. The VLR

stores the visiting user’s service profile and the MSC switches the visiting user’s circuit switched

transactions;
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• Serving General Packet Radio Service (GPSR) Support Node (S-GW): similar to the MSC/VLR

but for packet switched services;

• Gateway MSC (G-MSC): the switch that connects the PLMN’s CN to the external circuit switched

networks;

• Gateway GPRS Support Node (G-GSN): is the point that connects the PLMN’s CN to external

packet switched networks.

The interfaces used to communicate between different network elements are:

• Cu interface: the electrical interface between the SIM card and the ME;

• Uu interface: the W-CDMA radio interface which allows the UE to access the fixed part of the

network;

• Iu interface: the interface that connects the UTRAN to the CN;

• Iur interface: the interface that allows for soft handovers between RNCs;

• Iub interface: the interface that connects the Node B to the RNC.

All these interfaces are open standards (accessible by all) in order to motivate competition between

different manufacturers.

The architecture here described is the UMTS architecture specified before Release 5. Release 5

saw the introduction of many changes to the CN, both in the circuit switched domain and in the packet

switched domain.

In the circuit switched domain, the MSC was divided into the MSC server and the Media Gateway

(MGW) and the G-MSC was divide into the the G-MSC server and the MGW. The new functions of these

network nodes are as follows:

• The MSC or G-MSC server take care of the control functionality as the MSC or G-MSC did before,

but the user data goes via the MGW. One MSC/G-MSC server can control multiple MGWs, this

allows for better scalability in the network since only the number of MGWs needs to be increased;

• The MGW performs the switching for the user data and network inter-working processing.

Release 5 also also contains the first phase of IP Multimedia Subsystem (IMS), which enables a

standardised approach to the provision IP-based services. In the packet switched domain, the S-GSN

and the G-GSN were slightly enhanced, in addition, to provide IP-based services, the IMS has the

following new elements:

• Media Resource Function (MRF), which controls media stream resources or can mix different

media streams:
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• Call Session Control Function (CSCF), which acts as the first contact point to the terminal in the

IMS;

• MGW Control Function (MGWCF), which handles protocol conversations.

2.2.2 W-CDMA

This section is based on [6].

W-CDMA is the radio technology used in the UMTS air interface to provide multiple access to the

network, that is several users sharing the same radio resources.

The main idea behind W-CDMA is to share the same bandwidth but separate data streams using

spreading codes. Each data stream uses an unique spreading code which allows for its reception

without interference from other streams.

The main characteristics of W-CDMA are:

• W-CDMA is a wide-band Direct-Sequence Code Division Multiple Access (DS-CDMA) system,

which means user information is multiplied by quasi-random bits (called chips) derived from Code

Division Multiple Access (CDMA) spreading codes. This technology allows for bit rates up to

2 Mbps by using a variable spreading factor and multi-code connections;

• W-CDMA uses a chip rate of 3.84 Mcps which leads to carrier bandwidth of approximately 5 MHz.

This classifies W-CDMA as a wide-band system which have performance benefits such as in-

creased multi-path diversity;

• W-CDMA supports highly variable user data rates, the user data rate is kept constant in intervals of

10 ms frames and thus can only change from frame to frame. The control of data rates is typically

done by the network to achieve optimum throughput for packet data services;

• For full-duplex connections, W-CDMA supports two basic modes of operation:

– Frequency Division Multiplexing (FDD): consists in using separate carrier frequencies for the

uplink and downlink;

– Time Division Multiplexing (TDD): consists sharing the same carrier frequency for the uplink

and downlink, but using it at different times.

To better understand the concept of spreading and de-spreading lets look at an example, Figure 2.2

demonstrates the basic concept of spreading and de-spreading where the data is assumed to be a bit

sequence of rate R.

The spreading operation is performed by multiplying each data bit by a sequence of 8 code bits or

chips. This results in a spread data which now occupies 8 times the original bandwidth, therefore the
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spread factor is 8. To de-spread the data, the spread sequence is multiplied by the same chip sequence

which was used to spread the data initially, provided that the sequences are synchronised the original

data sequence is obtained, as shown in Figure 2.2.

Figure 2.2: Spreading and despreading in DS-CDMA [6].

The reason W-CDMA is very resilient to interference is because it uses a correlation receiver, which

integrates the de-spread data sequence in order to determine which symbols were sent. Figure 2.3

shows the operation principle of a correlation receiver.

Figure 2.3: Principle of CDMA correlation receiver [6].

As can be seen from Figure 2.3, the data after integration has an amplitude 8 times higher than

the original signal whereas another signal which was coded using a different spreading code as an

amplitude lingering around 0. This effect is termed processing gain and gives W-CDMA its robustness

against self-interference. Equation (2.1) is the expression for the processing gain:

processing gain =
chip rate

R
, (2.1)
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where the chip rate is 3.84 Mcps and R is the data rate. Note that the higher the data rate is, the lower

the processing gain will be. As an example, a speech service with rate 12.2 kbps will have a processing

gain of 25 dB. This mechanism allows for detection even if the signal power is low, in fact in some cases

the signal may even be below the thermal noise level making it hard to detect without the spreading code

and this is why this type of system originated in military applications.

The W-CDMA properties described above lead to the following consequences:

• The processing gain and wide-band nature of the system suggest a frequency reuse of 1 between

cells in a wireless system;

• Having many users sharing the same wide-band carrier provides interference diversity which will

average out the power of the interferers. This will boost system capacity when compared with

systems planned for worst case interference;

• The use of the previous two benefits requires tight power control and soft handovers to avoid users

blocking each others signals;

• Wide-band signals can resolve different propagation paths of a radio signal with higher accuracy

than signals with lower bandwidths. This results in more diversity against fading and thus improved

performance.

The spreading code is also known as channelisation code, channelisation codes are used for sepa-

rating physical data on the uplink, separating control channels form the same terminal on the uplink and

separating connections of different users within one cell in the downlink.

After the channelisation code, the data is multiplied by another code called scrambling code as shown

in Figure 2.4.

Figure 2.4: Relation between spreading and scrambling [6].

The scrambling code is used to separate terminals on the uplink and to separate cells on the down-

link.
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2.3 LTE

LTE is a 4G wireless communication standard developed by 3GPP. It is the access part of the Evolved

Packet System (EPS) and it was created under the requirements of high spectral efficiency, high peak

data rates, short round trip time as well as flexibility in frequency and bandwidth [7].

LTE introduced Orthogonal Frequency Division Multiple Access (OFDMA) as the radio link technol-

ogy used to access the network. Unlike UMTS, LTE does not support circuit switched connections, it is

a fully packet switched system where every service provided is built on top of the Internet Protocol (IP).

2.3.1 LTE network architecture

This section is based on [8,9].

An LTE network can be divided into two main components, the Evolved Packet Core (EPC) and

the Evolved Universal Terrestrial Access Network (E-UTRAN), their architectures are shown in Fig-

ures 2.5 and 2.6 respectively.

Figure 2.5: Simplified architecture of the EPC

Figure 2.5 shows the simplified architecture of the EPC, its main components are the Mobility Man-

agement Entity (MME), the Home Subscriber Server (HSS), the Serving Gateway (S-GW) and the PDN

Gateway (P-GW).

The MME is the main control element in the EPC. It is responsible for managing user mobility by

tracking the user in its service area, managing the user subscription profile and service connectivity and

in collaboration with the HSS, it is responsible for security and authentication.

The S-GW is a router that directs user plane traffic between the evolved Node Bs (eNodeBs) and the

P-GW.

The P-GW is the edge router that connects the EPS to the Packet Data Networks (PDNs). It serves

as an IP point of attachment for the UE and performs traffic gating and filtering functions required by

the service in question. It typically is responsible for assigning the UE the IP addresses required to

communicate, however these can also be assigned by a PDN in which case the P-GW tunnels traffic

between the UE and P-GW.
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The Policy and Charging Rules Function (PCRF) is connected to the P-GW, this element is respon-

sible for managing the user’s Quality of Service (QoS) and data charges, the information is provided to

the P-GW for enforcement.

Figure 2.6: Simplified architecture of the E-UTRAN

E-UTRAN is the radio component of the architecture, it connects UEs to the EPC, which in turn

connects the UEs to each other and to PDNs such as the Internet.

The E-UTRAN is composed solely of eNodeBs, it is a mesh of interconnected eNodeBs via X2

interfaces (physical or logical links). These nodes are intelligent radio base stations that cover one or

more cells and handle all the radio related protocols (i.e. handover). Unlike in UMTS there is no need

for an RNC to manage the base stations. Some key functions performed by the eNodeBs are:

• Managing the radio link’s resources and controlling the radio bearers;

• Compression of IP headers and encryption of the user data stream;

• Connecting the UE to the correct MME and handling the scheduling and transmission of messages

between the two;

• Routing user traffic towards the S-GW and delivering user traffic form the S-GW to the UE;

• Measurement and measurement reporting configuration for mobility and scheduling;

• Handling handover between eNodeBs connected to each other through X2 interfaces.

2.3.2 OFDMA

This section is based on [10].
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As discussed in Section 2.2.2, UMTS uses W-CDMA to provide multiple access. LTE introduced two

multiple access technologies, OFDMA is used for the downlink and Single Carrier Frequency Division

Multiple Access (SC-FDMA) is used for the uplink.

In a single carrier transmission, information is modulated only to one carrier, adjusting the phase

and/or amplitude of the carrier (frequency can also be adjusted but this is not the case in LTE).

In a digital system, the higher the data rate, the higher the symbol rate is and thus the larger the

bandwidth has to be for the same modulation. The transmitter can change the modulation in order for

the signal to carry the desired number of bits/symbol. The resulting spectrum wave form is a single

carrier spectrum centred around the carrier frequency and influenced by the filter. This is shown in

Figure 2.7.

Figure 2.7: Single carrier transmitter [10].

In a Frequency Division Multiple Access (FDMA) system, different users use different carriers and

sub-carriers to access the system simultaneously, having their data modulated around different centre

frequencies. In this scenario it is important to avoid excessive interference between carriers without

using extensive guard bands between users. The FDMA principle is shown in Figure 2.8.

Figure 2.8: FDMA principle [10].

The multi-carrier principle is shown in Figure 2.9, where data is divided by the different sub-carriers

for just one transmitter.

One way of avoiding large guard bands is to parametrise the system such that different sub-carriers

are orthogonal from each other. This allows their spectrums to overlap without interfering. This principle

is called OFDMA, where each of the center of the sub-carriers is selected such that the neighbouring
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Figure 2.9: Multi-carrier principle [10].

sub-carriers have zero value at the sampling instant of the desired sub-carrier, this is shown in Fig-

ure 2.10.

Figure 2.10: Maintaining the sub-carriers’ orthogonality [10].

For LTE, the constant frequency difference between the sub-carriers has been chosen to be 15 kHz

in Release 8. The key properties that led to the adoption of OFDMA by LTE were:

• Good performance in frequency selective fading channels;

• Low complexity of base-band receiver;

• Good spectral properties and handling multiple bandwidths;

• Link adaption and frequency domain scheduling;

• Compatibility with advanced receiver and antenna technologies.

OFDMA also faces some challenges such as:

• Tolerance to frequency offset. This was solved in LTE by choosing sub-carrier spacing of 15 kHz,

which gives a large enough tolerance for Doppler shift due to velocity and implementation imper-

fections;

• The high Peak-to-Average Power Ratio (PAPR) of the transmitted signal, which requires high lin-

earity in the transmitter. Linear amplifiers have a low power conversion efficiency and which makes
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them not ideal for mobile uplinks. In LTE this was solved by using the SC-FDMA for the uplink,

since this enables better power amplifier efficiency.

OFDMA is based on the Discrete Fourier Transform (DFT) and its inverse operation the Inverse

Discrete Fourier Transform (IDFT). These transformations allow moving the signal from the time domain

to the frequency domain and back again.

In practical applications the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT)

are used. Provided that the sampling rate requirements of digital signal processing are met, these

operations can be carried out back and forth without loss of information.

The OFDMA transmitter uses narrow, mutually orthogonal sub-carriers spaced 15 kHz from each

other. The transmitter uses an IFFT block on each sub-carrier to convert the signal to the time domain.

The IFFT block is followed by adding the cyclic extension (cyclic prefix) in order to to avoid inter-symbol

interference.

The cyclic prefix is added by copying part of the symbol at the end and attaching it to beginning of

the symbol. Using a cyclic extension is preferable than a break in transmission (guard interval), since

this will make the symbol seem periodic. When the symbol seems periodic the impact of the channel

corresponds to a multiplication by a scalar (assuming the cyclic extension is long enough) which allows

for a discrete fourier spectrum enabling the use of the DFT and IDFT. Figure 2.11 shows the architecture

of the OFDMA transmitter and receiver.

Figure 2.11: OFDMA transmitter and receiver [10].

A key aspect of using OFDMA is that a base station transmitter can allocate its users basically
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any sub-carrier in the frequency domain. The possibility of having different sub-carriers allocated to

users enables the scheduler to benefit from frequency diversity. Due to overhead caused by signalling

resolution, in LTE allocation is not done on an individual sub-carrier level basis but is based on Physical

Resource Blocks (PRBs), each one consisting of 180 kHz. The respective allocation resolution in the

time domain is 1 ms also denoted by one Transmission Time Interval (TTI), however, each PRB lasts

only 0.5 ms. Each PRB can be modulated independently, LTE uses Quadrature Amplitude Modulation

(QAM) more specifically 4-QAM, 16-QAM and 64-QAM.

2.4 Mobility

This section is based on [11–13].

This section gives an overview of mobility management in an LTE system. To avoid redundancy,

mobility management in UMTS is not fully addressed, this is because the fundamental principles of

mobility management are very similar between the two technologies. However, Section 2.4.4 gives a

quick overview on UMTS handover procedures.

Mobility management is essential in any wireless telecommunications system. It has many added

benefits for the user but these come at the expense of network complexity. LTE aims to provide seamless

mobility while keeping network complexity down.

There are two types of mobility to consider, idle mode mobility and connected mode mobility:

• Idle mode mobility: the UE is switched on but there is no connection between it and the network;

• Connected mode mobility: the UE is connected to the to network, i.e. it is transmitting data.

In idle mode mobility, the UE performs cell re-selection autonomously based on measurements it

makes. In connected mode mobility, the UE sends measurement reports to the E-UTRAN which decides

whether or not to trigger an handover. Table 2.1 highlights the main difference between the two types of

mobility.

Table 2.1: Difference between mobility types.

Idle mode mobility Connected mode mobility
Cell re-selection done automati-
cally by the UE

Network controlled handovers

Based on UE measurements Based on UE measurements
Controlled by broadcasted pa-
rameters
Different priorities can be as-
signed to frequency layers

The measurements performed by the UE necessary for mobility are:
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• Reference Signal Received Power (RSRP): the average power measured in a cell (across receiver

branches) of the resource elements that contain cell-specific reference signals;

• Reference Signal Received Quality (RSRQ): the ratio of the RSRP and the E-UTRA Carrier Re-

ceived Signal Strength Indicator (RSSI), for the reference signals.

• RSSI: the total received wide-band power on a given frequency. It includes the noise from interfer-

ing cells and other noise sources. RSSI is not reported by the UE as an individual measurement,

but it is only used in calculating the RSRQ value inside the UE.

For inter-system mobility between LTE and UMTS the following measures are necessary:

• UTRA FDD Common Pilot Channel (CPICH)’s Received Signal Code Power (RSCP): represents

the power measured on the code channel used to spread the primary pilot channel on W-CDMA;

• UTRA FDD (and TDD) carrier’s RSSI: represents the corresponding wide-band power measure-

ment as also defined for LTE;

• UTRA FDD CPICH’s Ec/No: represents the quality measurement, like RSRQ in LTE, and provides

the received energy per chip energy over the noise;

• UTRA TDD Primary Common Control Physical Channel (P-CCPCH)’s RSCP: represents the code

power of the UTRA TDD broadcast channel.

2.4.1 Idle mode mobility

In idle mode mobility the UE selects a cell based on radio measurements. This procedure is called

cell selection, when a UE selects a cell it is said that the UE camped in that cell. For the UE to camp

in a cell it is required good radio quality and that the cell is not blacklisted. For a cell to be a suitable

candidate it has to fulfil the S-criterion:

Srxlevel > 0 , (2.2)

where

Srxlevel > Qrxlevelmeas − (Qrxlevmin −Qrxlevelminoffset) , (2.3)

and Srxlevel is the cell selection Rx level value, Qrxlevelmeas is the measured cell received level

(RSRP), Qrxlevmin is the minimum required received level in dBm and Qrxlevelminoffset is an offset used

when searching for a higher priority PLMN1.

1LTE allows setting priority levels for PLMNs in order to specify preferred network operators in cases such as roaming.
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After the UE has camped on a cell it may continue to find better cells for re-selection according to the

re-selection criteria. Intra-frequency and equal priority intra-E-UTRAN inter-frequency cell re-selection

are based on the cell ranking criterion, also known as the R-criterion. The UE must measure the

neighbouring cells, which are indicated in the neighbour list of the serving cell, and choose the best

candidate from the list.

The network may prevent the UE from considering some cells for re-selection by blacklisting them.

To limit the number of re-selections measurements made, it has been defined that if the serving cell’s

Rx level value, SServingCell, is high enough the UE does not need to make any intra-frequency, inter-

frequency or inter-system measurements. The measurements resume once SServingCell ≤ Sintrasearch

for intra-frequency measurements, and SServingCell ≤ Snonintrasearch for inter-frequency measurements.

The serving cell ranking is defined as Rs :

Rs = Qmeas,s +Qhyst , (2.4)

and a neighbouring cell’s ranking as Rn:

Rn = Qmeas,n +Qoffset , (2.5)

whereQmeas is the RSRP measurement, Qhyst is the power domain hysteresis to avoid ping-ponging be-

tween cells and Qoffset is control parameter to account for different frequency and/or cell characteristics

such as propagation properties. The re-selection occurs to the best ranked neighbour cell if it is ranked

better than the serving cell for longer than a time Tre−selection, this limits overly frequent re-selections.

The Qhyst provides hysteresis meaning that the neighbour cell must be better than the serving cell by a

configurable amount for re-selection to occur, and the Qoffset allows for bias in the re-selection process.

In LTE, inter-frequency (different priorities) and inter-system re-selection are based on method called

layers which allows the operators to control how the UE prioritises camping on different Radio Access

Technologies or frequencies. The method is known as absolute priority based re-selection, each layer

is assigned a priority and the UE tries to camp on the highest priority layer than can provide decent

service. A UE will camp on a higher priority layer if the layer is above a threshold Treshhigh for longer

than a re-selection period Tre−selection. The UE will only camp to a lower priority layer if the higher layer

drops below the threshold Treshhigh and the lower layer rises above the threshold Treshlow.

It is common to pass the measurements through a low-pass filter in order to average them over time.

This shields the measurement process from fast fading effects, preventing unnecessary cell re-selections

or the none occurrence of a necessary cell re-selections.
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2.4.2 Handover

In LTE handovers are based in measurements made by the UE but controlled by the E-UTRAN.

LTE uses only hard handovers which are targeted to be lossless by using packet forwarding between

the source and target eNodeBs. The path the traffic makes through the core network is only updated

after the handover is done, this called late path switching. Before sending a measurement report to the

eNodeB, an UE must identify and measure the target cell. After receiving the measurement report, the

E-UTRAN may decide or not to trigger the handover.

LTE supports inter-Radio Access Technology (RAT) handovers which are inter-system handovers

between the E-UTRAN and GSM EDGE Radio Access Network (GERAN), UTRAN or cdma2000®.

The inter-RAT handover is controlled by the source access system, which makes the measurements

and the handover execution decision. The inter-RAT handover is a backwards handover meaning that

the radio resources are reserved in the target system before the handover command is issued to the

UE2. All the signalling is done through the core network since there are no interfaces between the

different radio access systems. All the information regarding the target system is given to the UE by the

source system and the user data can be forwarded from the source system to the target system to avoid

the loss of data.

As is in idle mobility, the handover decision is based on measurements of the RSRP or RSRQ, the

UE will request an handover if the signal of the serving cell plus an handover margin drops below the

signal of a neighbouring cell [14, 15]. The handover margin is an offset plus an hysteresis value which

are used to avoid unnecessary handovers and also the ping-pong effect.

In LTE, handovers are triggered by event A3 for intra-LTE handovers and by event B2 for inter-RAT

handovers [14,15].

• The A3 event is triggered when the signal of neighbouring LTE cell becomes higher than the signal

of the serving cell plus the handover margin. The entering condition for the A3 event is:

Mn+Ofn+Ocn−Hys > Ms+Ofs+Ocs+Off , (2.6)

where Mn is the measurement of the neighbouring cell, Ms is the measurement of the serving

cell, Ofn and Ofs are the frequency specific offsets of the neighbouring and serving cells, Ocn

and Ocs are the cell specific offsets of the neighbouring and serving cells, Off is the tunable offset

parameter and Hys is the hysteresis parameter. Mn and Ms are measured in dBW or dBm and

all the other quantities are measured in dB.

2With the exception of GERAN which does not support packet switched handovers.
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The leaving conditions for event A3 is:

Mn+Ofn+Ocn+Hys < Ms+Ofs+Ocs+Off . (2.7)

• The B2 event is triggered when the the signal from the serving cell drops below a threshold and

the signal from a inter-system cell rises above another threshold. The entering condition for event

B2 is:

Ms+Hys < Thresh1
∧

Mn+Ofn+Ocn−Hys > Thresh2 , (2.8)

and the leaving condition is:

Ms−Hys > Thresh1
∨

Mn+Ofn+Ocn+Hys < Thresh2 . (2.9)

In both cases, the handover event is only triggered if the entering condition remains true for longer

than a time to trigger, Ttrigger, to avoid unnecessary handovers and the ping-pong effect.

In order to mitigate the effects that fast fading has on the measurements, the measurements are

passed through a filter that averages the measurements over time. This filter helps to prevent unneces-

sary handovers and is described in Section 2.4.3.

In order to save power, the UE does not need to measure the neighbouring cells at all times, it is

possible to set thresholds that trigger the start and end of the measuring process. These events are

called A1 and A2 and are defined as:

• A1: Signal from the target cell becomes better than threshold;

• A2: Signal from the serving cell becomes worse than threshold.

Figure 2.12 shows an handover procedure, where it is possible to see the aforementioned handover

events as function of the source and target cells’ RSRP.

Some typical values for the handover parameters can be found in [15] where Ericsson recommends

the following parameters, regarding intra-LTE handover parameters:

• The trigger quantity should be the measured RSRP of the serving and neighbouring cells;

• The hysteresis parameter should be 4 dB;

• The time to trigger, Ttrigger, should be 40 ms;

• The offset should be 0 dB;

• For higher loads the hysteresis should be 1 dB and the offset 3 dB.
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Figure 2.12: Handover events.

2.4.3 Handover filter

This section describes the handover filter specified by 3GPPs in [16].

The filter equation is given by (2.10):

Ft = (1− a)Ft−1 + aMt , (2.10)

where:

• Ft is the updated filtered measurement result;

• Ft−1 is the old filtered measurement result;

• Mt is the latest received measurement result from the physical layer measurements;

• a = 1/2(k/2), where k is the parameter denoted by ”Filter Coefficient”3.

3If k = 0 than there is no filtering
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2.4.4 The handover in UMTS (3G)

This section is based on [6,17].

In UMTS, handovers are controlled by the RNC which decides when and to where the handover is

made. Nonetheless, the handover is based on UE measurements of the Signal to Interference Ratio

(SIR) (Ec/I0) of the CPICH from different eNodeBs.

For intra-system intra-frequency handovers, UTMS uses soft and softer handovers, during which the

UE communicates concurrently via two air interfaces. For inter-frequency and inter-system handovers,

UMTS use hard handovers, during which the UE is not communicating via any air interface. As a result,

the handover delay must be small.

The following terminology applies in UMTS handovers:

• Active set: The set of cells that form a soft handover connection with the UE;

• Neighbouring set: The set of cells which are being monitored by the UE but whose pilot Ec/I0 is

not strong enough to be added to the active set.

There are three events related to soft and softer handovers:

• 1A or Radio Link Addition: add a cell to the active set;

• 1B or Radio Link Removal: remove a cell from the active set;

• 1C or Combined Radio Link Addition and Removal: when the active set is full the weakest cell in

the active set is removed.

In the UTRAN, inter-frequency and inter-RAT re-selections are based on the same ranking as intra-

frequency re-selections. This proved difficult for the network to control as the measurement quantities

of different RATs are different and the network needs to be able to control re-selection between multiple

3GPPs RATs (or even non-3GPPs technologies).

2.5 Load balancing review

This section is based on [18] as well as the sources cited in the text.

The process of balancing network load between neighbouring cells in space, frequency or system is

called load balancing. During periods of high network resource utilisation some cells might become over-

loaded while its neighbours still have resources not being used. Overloaded cells can cause declines in

the QoS provided due to lack of resources and deteriorate the overall network performance. This prob-

lem is caused by an inefficient utilisation of the total available network resources and can be mitigated by

using load balancing techniques. Load balancing is performed by triggering the mobility mechanisms of
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a RAT resulting in the transit of UEs to neighbouring cells. The neighbouring cells can be intra-frequency

intra-RAT neighbours, inter-frequency intra-RAT neighbours or even inter-RAT neighbours.

To perform load balancing it is first necessary to have a measure of the cell’s load. The load of a

cell can be measured directly by looking at the resource utilisation of a cell or indirectly by looking at

measures that can indicate problems in a cell. Direct measures of a cell’s load include:

• The number of allocated PRBs in LTE;

• The number of Channel Elements (CEs) used in UMTS.

Some indirect measures of a cell’s load are:

• The downlink/uplink throughput;

• The number of unsatisfied users;

• The total transmitted and received power;

• The Signal to Interference plus Noise Ratio (SINR);

• Blocking probability of new active users.

Load balancing techniques can be applied to idle mode users or connected mode users. Load

balancing for connected users its easier to perform because the network has measures of the user’s

radio conditions and traffic requirements before deciding whether to perform load balancing. Idle mode

load balancing is more difficult because the network does not know in advance what radio conditions

the user will have and what resources the user will require.

The classical mechanism to perform load balancing in LTE is to adjust the cell’s effective coverage

area in order to trigger the UE to make a cell re-selection or handover, this can be done by remotely

controlling the electrical tilt and transmitted power of the antennas, or by adjusting the cell re-selection

and handover parameters.

This first mechanism is somewhat impractical due to having to make actual physical changes in the

network. On the other hand, the second mechanism is able to artificially change the effective coverage

area of a cell without impacting the actual received signal power and making physical changes to the

network. Since the first mechanism directly impacts the signal power, it can cause coverage holes due

to the coverage area of the cell being highly non-uniform in reality. Nonetheless, the first mechanism is

not as susceptible to interference as the second.

Since changing the cell re-selection and handover parameters is easier most of the research is

focused on this solution. These parameters can be optimised in an open loop, i.e. the parameters are

optimised once and implemented in the network, or in a closed loop.
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A network which optimises parameters in a closed loop is called a SON. SONs are networks capable

of actively and autonomously controlling the networks parameters, based on real time measurements.

These type of networks work in real time in order to adapt and adjust to a changing situation.

In [19] 3GPP standardises the measurements, procedures and open interfaces to support better

inter-operability in a multi-vendor environment for SONs. In this standard 3GPPs introduces the frame-

work for two mobility SON algorithms called Mobility Robustness Optimisation (MRO) and Mobility Load

Balancing (MLB). These frameworks do not directly specify the algorithm to be used, instead they specify

the objectives, inputs, outputs and expected results of the algorithm.

2.5.1 Mobility Robustness Optimisation

This section is based on [19].

In 2G/3G systems handover parameters were set manually and were costly to update after initial

deployment, to address this issue MRO proposes the detection and automatic fix of mobility problems.

The main objective of the algorithm is to reduce handover related Radio Link Failures (RLFs) and the

secondary objective is the reduction of the inefficient use of network resources due to unnecessary or

missed handovers [19]. Handover failures can be due to:

• Too Late Handovers (TLH);

• Too Early Handovers (TEH);

• Handover to the Wrong Cell (HWC).

Inefficient network resource usage may result from non-optimal configuration of handover parameters

even if it does not result in RLFs, for example, incorrectly setting the handover hysteresis may be the

reason for either the ping-pong effect or prolonged connection to non-optimal cell [19].

MRO should be able to detect TLH, TEH and HWC with help of RLF reports from neighbouring cells.

The algorithm should be able to minimise the number of failed or unnecessary handovers by optimising

the following parameters:

• Hysteresis;

• Time to Trigger;

• Cell Individual Offset;

• Cell re-selection parameters.
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2.5.1.A An inter-RAT MRO implementation

In [20] the authors propose a SON-based algorithm for optimising inter-RAT handover thresholds.

The algorithm runs on both LTE and 3G networks and uses inter-RAT Key Performance Indicators

(KPIs) that capture the number and type of mobility failure events4to feed a proportional feedback con-

troller which controls the handover thresholds [20].

The simulation results showed that the proposed algorithm outperformed three distinct network-wide

settings of handover thresholds in reducing the number of RLFs, and implied the importance of cell-

specific handover thresholds depending on the mobility and traffic conditions in different handover areas

[20].

The algorithm was also shown to converge faster and perform better than the Taguchi’s method

[21,22] which is statistical optimisation algorithm recently also applied to engineering.

2.5.2 Mobility Load Balancing

The objective of MLB is to optimise cell re-selection/handover parameters in order to cope with the

unequal traffic load, and to minimise the number of handovers and re-directions needed to achieve the

load balancing [19].

“Self-optimisation of the intra-LTE and inter-RAT mobility parameters to the current load in the cell

and in the adjacent cells can improve the system capacity compared to static/non-optimised cell re-

selection/handover parameters” [19].

The optimisation should minimise human intervention in network management and optimisation tasks

and not compromise the QoS provided when compared to the case with normal mobility without load

balancing.

Load balancing can be done in two scenarios:

• Intra-LTE load balancing;

• Inter-RAT load balancing.

The specification states that an eNodeB should monitor its controlled cells and exchange load related

information via an X2 or S1 interface with its neighbours, after, an algorithm should distribute the load

towards adjacent or co-located cells including cells from other RATs.

After the algorithm is used, it is expected that the load is balanced, the capacity of the system

increases and human intervention is minimised.

4Such as the number of too late handovers, too early handovers, unnecessary handovers, ping-pong scenarios and handovers
to the wrong cell.
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For intra-LTE load balancing the algorithm should optimise the handover parameters changing the

handover trigger threshold, for inter-RAT load balancing [19] does not specify which parameters should

be optimised.

It is important to note that MRO and MLB may conflict when the objective of reducing the amount of

failed and unnecessary handovers clashes with the objective of balancing the load. This happens when

both algorithms try to move the same parameter in opposite directions or even to different values in the

same direction.

The following sections aim to provide a brief literature review of the different types of load balancing

methods already in existence.

2.5.2.A MLB Implementations

In [23] a load balancing algorithm for idle mode mobility is proposed. The algorithm adjusts cell

re-selection parameters instead of handover parameters. This is done in order for the load balancing

algorithm not to interfere with MRO algorithms that may be changing the handover parameters. The

authors show that the algorithm reaches considerable throughput gains for the simulated scenarios.

In [24] the authors propose a load balancing algorithm for a SON which uses virtual load measures

to try to minimise the number of unsatisfied users in the network. The paper uses a simulation scenario

where a bus route creates load imbalances in the network. The authors go on to show that algorithm

manages to have less unsatisfied users in the simulation scenario when the algorithm is active then in

the reference scenario where the algorithm was not used.

In [25] the authors propose a game theory approach to load balancing. The network is divided into

zones and uses a Cournot game model to balance the load. The Cournot game model can be used

to describe commodity exchange process among a limited number of monopoly companies involving

several parameters of price and production of a specific commodity [25]. By regarding traffic load bearing

of a cell as the commodity, the load balancing algorithm achieves optimal values for the parameters that

mediate interactions between the cells [25]. The simulation results showed that the proposed algorithm

overcomes the ping-pong and slow-convergence problems of more conventional approaches to MLB.

In [26] the authors propose a load balancing algorithm that is formulated as an optimisation prob-

lem. The algorithm uses the SINR and bandwidth efficiency of the network to construct an optimisation

variable. The goal is then to find which network parameters minimise the optimisation problem. The

simulation results showed that the proposed algorithm can efficiently decrease the new call blocking

rate, reduce network resources occupation and increase the network bandwidth efficiency [26].

In [27] the authors use a neuro-fuzzy inference system to tackle the load balancing problem This

approach uses a soft computing concept called fuzzy logic, which denotes probabilities of a state instead

of true or false, combined with a machine learning concept denoted neural network to form what is
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called an adaptive neuro-fuzzy inference system. In [27] the authors introduce three key performance

indicators, the number of satisfied (dissatisfied) users, the fairness index and the virtual load of the

source and show that the developed algorithm is able to sustain a load balancing process by decreasing

the hysteresis value when the number of unsatisfied users increases. There are no simulation results

presented in [27]. In [28], the authors present another algorithm based on fuzzy logic and shows that it

can be balance bandwidth utilisation and reduce blocking probability when compared with a case where

no load balancing is made. Neither [27] or [28] present a comparison between their methods and simpler

load balancing approaches.

2.6 Forecasting

Predicting the evolution of network traffic over time can be extremely helpful in mid to long term

system capacity planning.

Given a set of traffic observations spread across time in equally distant intervals (e.g. daily observa-

tions), it is possible to try to predict the evolution of traffic in the future based on its previous behaviour.

The sequence of traffic observations can be seen as a time series, “a time series is a set of observations

xt, each one being recorded at a specific time t” [29].

Since the behaviour of network traffic in the future is inherently uncertain, meaning the behaviour of

the time series is not fully deterministic, each observation xt can be seen as a realisation of a random

variable Xt. In other words, the observed time series {xt} is a realisation of a sequence of random

variables {Xt} [29].

If a probabilistic model describing {Xt} can be determined, then it is possible to forecast, with a level

of confidence, the value of future observations of {xt}, using said model. The definition of probabilistic

model of a time series can be found in Appendix A.

The process of fitting a probabilistic model to describe {Xt} given a set of observations {xt} is called

time series modelling or model fitting. A model can also be seen as a function that outputs the next

value in the time series (forecast) given the previous ones (observations).

To fit a model to a time series it is necessary to understand some basic concepts regarding time

series. The concepts of mean, Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF)

and wide sense stationarity are defined in Appendix A.

Once the model is fitted it can be used to forecast future observations, this is done by using the

model’s formula to obtain the next observation in the series. To get a larger forecasting horizon5the

model is applied recursively taking each forecast as an observation to be used in the next iteration.

Another method of forecasting is to do a rolling forecast, this means that instead of taking the fore-

5The forecasting horizon is the number of observations in the future that are being predicted.
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casted value as an observation, one waits until the actual observation is available to use for the next

forecast. This method only allows for one forecast at a time but it has the benefit of added accuracy

since the forecasting horizon is always one observation. It is possible to refit the model at any time to

account for changes in the time series behaviour, depending on the data one may choose to refit the

model every any fixed amount of observations (e.g. refit the model every week for daily observations).

Since the modelled series {Xt} is a sequence of random variables it is possible to forecast not only

its mean but also its standard deviation, this allows us to obtain confidence intervals for the forecasted

mean. This intervals are called prediction intervals and are regions where the forecast is expected to be

in, with a given probability. Commonly used prediction intervals include the 80% and 95% confidence

intervals [30]. Prediction intervals tend to increase in size as the forecasting horizon increases [30],

this is due to the recursive manner in which forecasting is made which propagates error forward leading

to higher uncertainty. As a result, choosing a reasonable forecasting horizon is important, since the

forecasts’ validity decrease as the forecasting horizon increases.

2.6.1 Diagnostics

After fitting a model to a time series it is important to determine whether the model is a good fit for

the data. This section presents several complementary techniques for model selection and diagnostics.

2.6.1.A The Akaike Information Criterion

The Akaike Information Criterion (AIC) [31] is a measure used to compare the quality of different

statistical models fitted to the same data. It measures the amount of information lost after fitting the

model. It can measure the relative quality of one model in comparison with others, it does not give an

absolute verdict on fit’s quality. The AICc [30, 32] is the AIC adjusted to penalise more complex models

and avoid overfitting. To choose between models using the AICc, the model with the lowest AICc is

chosen, i.e. the one which lost the least amount of information.

2.6.1.B Forecasting errors

The most intuitive tool for diagnostics are error metrics, these metrics measure the discrepancy

between the forecast and the observation.

The simplest error metrics are scale-dependent errors, these errors can only be used to compare

accuracy of different fits on the same time series, because their values depend directly on the values of

the observations.

The forecast error is defined as

ei = yi − ŷi , (2.11)
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where yi is the observation and ŷi is the forecast.

The Mean Absolute Error (MAE) is

MAE = mean(|ei|) , (2.12)

and the Root Mean Square Error (RMSE) is

RMSE =
√
mean(e2i ) . (2.13)

Percentage errors are more useful than scale-dependent errors because they allow the comparison

between different models on different time series. In addition, with percentage errors it is easy to see in

relative terms how far from the observation the forecast is.

The percentage error is defined as:

pi =
100ei
yi

. (2.14)

The Mean Absolute Percentage Error (MAPE) is:

MAPE = mean(|pi|) . (2.15)

Scale-dependent and percentage errors can be problematic when the value of the observations is

0 or close to 0, this will trigger a division by 0 which will impede the calculation of the error metrics.

Because of this Rob J. Hyndman in [33] proposed the introduction of scaled errors.These errors are a

comparison between the naı̈ve6forecast and the forecast performed by the model being tested, they can

be used to compare forecast accuracy across series on different scales without the problem of dividing

by 0.

The scaled error is defined as

qj =
ej

1
T−1

∑T
t=2 |yt − yt−1|

, (2.16)

where T is the length of the series.

The Mean Absolute Scaled Error (MASE) is

MASE = mean(|qj |). (2.17)

6The nı̈ve forecast is simply taking the value of the last observation as the forecast.
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2.6.1.C Training, validation and test sets

A common approach for model diagnostics widely used in the field of machine learning is to divide

the data into to three separate sets [34]. The training set is the one used to fit the model to the data. The

validation set is used to measure the accuracy of the fit (error metrics) and adjust the model’s parameters

accordingly. The test set is used in the end stage to determine the accuracy of the final model in a real

scenario.

There are several “rules of thumb” on how to split the data into training, validation, test sets, these

rules are not laws and the most adequate data split will depend on the situation.

In the case of time series modelling, the model is often adjusted using only the training set, in this

case no validation set is required.

Another machine learning technique is to use learning curves to determine if the model presents

high bias (overfitting) or high variance (underfitting) [34]. This is useful to determine whether more

observations are necessary.

2.6.1.D Residual diagnostics

The residuals of a fit are the difference between the observations and their forecasts (as in equa-

tion (2.11)). The residuals of a good fit will have the following properties [30]:

• “The residuals are uncorrelated. If there are correlations between residuals, then there is informa-

tion left in the residuals which should be used in computing forecasts” [30].

• “The residuals have zero mean. If the residuals have a mean other than zero, then the forecasts

are biased” [30].

In addition to these properties, it is useful for the residuals to have constant variance and be normally

distributed. These properties facilitate the calculation of prediction intervals.

2.6.2 Simple forecasting methods

Some of the more simple forecasting techniques methods include the average method, naı̈ve method

and seasonal naı̈ve method [30]. This methods have low complexity and therefore their forecasts are

extremely useful to use as benchmarks for more complex methods.

The average method is simply taking the mean of the time series as the forecast for the next ob-

servation [30]. The naı̈ve method is to take the last observation and use it as the forecast for the next

observation [30]. In the seasonal naı̈ve method a seasonal period m is defined and instead of using the

last observation as the forecast, the previous observation from the same season is used as the forecast

(the observation m observations before) [30].
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2.6.3 ARMA family models

This section is based on [35–37], however, some of the formulas had to be deduced from the material.

There is a large family of models that fall under the category of Auto-Regressive Moving Average

(ARMA) models. These models are based on the assumption that the time series is a process whose

current value depends on its previous values.

A Moving Average (MA) process of lag q is a process whose current value depends on current and

past observations of a White Noise (WN) process up to a lag q. This process is written as MA(q). The

definition of a White Noise process is given in Appendix A.

Definition 2.6.1. “The MA(q) Process: {Xt} is a moving-average process of order q if:

Xt = Zt + θ1Zt−1 + . . .+ θqZt−q , (2.18)

where {Zt} ∼WN(0, σ2) and θ1, . . . , θq are constants” [35].

Proposition 2.6.1. The autocorrelation of an MA(q) process is zero for lags greater than q, this means

that if {Xt} is a stationary q-correlated time series it can be represented by an MA(q) process [35].

An Auto-Regressive (AR) process of lag p is a process whose current value depends on observations

of its past values up to a lag p, as well as a WN term. This process is written as AR(p)

Definition 2.6.2. “The AR(p) Process: {Xt} is a autoregressive process of order p if:

Xt =

p∑
i=1

φiXt−i + Zt , (2.19)

where {Zt} ∼WN(0, σ2) and φ1, . . . , φp are constants” [35].

Proposition 2.6.2. The partial auto-correlation of an AR(p) process is zero for lags greater than p, this

means that if {Xt} is a stationary p-partially-correlated time series it can be represented by an AR(p)

process [35].

The combination of an AR(p) process with an MA(q) process is an ARMA(p, q) process called an

Auto-Regressive Moving Average process.

Definition 2.6.3. “{Xt} is an ARMA(p, q) process if {Xt} is stationary and if for every t,

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q , (2.20)
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where {Zt} ∼WN(0, σ2) and the polynomials (1−φ1z− . . .−φpzp) and (1 + θ1z+ . . .+ θqz
q) have

no common factors” [36].

Alternatively, an ARMA process can be written as:

Xt = Zt +

p∑
i=1

φiXt−i +

q∑
i=1

θiZt−i , (2.21)

or

(
1 +

p∑
i=1

φiB
i

)
Xt =

(
1 +

q∑
i=1

θiB
i

)
Zt , (2.22)

where B is the lag operator, meaning that BiXt = Xt−i.

ARMA processes are extremely useful for describing stationary time series, however they do not

usually fit non-stationary time series. In order to use these models with non-stationary time series it is

first necessary to transform the series into a stationary time series. One of the transforms that is able to

accomplish this is differencing.

Suppose Yt is Xt d times differenced then:

Yt = (1−B)dXt. (2.23)

As an example, differencing Xt one time results in Xt −Xt−1.

The Auto-Regressive Integrated Moving Average (ARIMA) model is an expansion of the ARMA model

which can be used to fit non-stationary time series. These models are written as ARIMA(p, d, q):

(
1 +

p∑
i=1

φiB
i

)
(1−B)dXt = δ +

(
1 +

q∑
i=1

θiB
i

)
Zt, (2.24)

where p and q are the AR and MA terms, and d is the degree of differencing the series suffers before the

ARMA(p, q) model is fitted.

It is often the case that the time series shows strong seasonal behaviour, this means that its value

is similar every m observations, e.g. network traffic is higher in a business cell during the week than on

the weekend.

To allow for seasonality in the data, ARIMA models can be expanded by introducing a seasonal

component on top of an existing model, the seasonal component is simply another ARIMA model which

only works over intervals that are multiples of the seasonal period m.

These models are called Seasonal ARIMA (S-ARIMA) and are written asARIMA(p, d, q)×(P,D,Q)m:

(
1 +

p∑
i=1

φiB
i +

P∑
i=1

ΦiB
m×i

)
(1−B)d(1−Bm)DXt = δ +

(
1 +

q∑
i=1

θiB
i +

Q∑
i=1

ΘiB
m×i

)
Zt. (2.25)
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In the network traffic example given previously, the seasonal period is m = 7 and the seasons are

the days of the week.

It is also possible to add to the model external regressors, this means to incorporate in the model

one or more time series with the same length as the time series to which the model will be fitted. The

external regressors can improve the fit by adding relevant information to the model, e.g. if a time series

has strong weekly seasonality, holidays during the week will probably present weekend-like behaviour

instead of week-like behaviour, in this case using an external regressor to denote whether a day is an

holiday or not might improve the fit.

2.6.3.A Fitting ARIMA models

To fit an ARIMA(p, d, q) × (P,D,Q)m model to the time series it is necessary do determine which

model parameters (p, d, q, P,D,Q) to use before estimating the model’s coefficients (φ1, . . . , φp and

θ1, . . . , θq). The most common approach to determine the model’s parameters is the Box-Jenkins

methodology introduced by G. Box and G. Jenkins in 1970 [38].

The first step in the Box-Jenkins method is to determine whether the time series is stationary and if

there exists any significant seasonality in the data. If seasonality is found to exist and the series is non-

stationary, it is important to determine whether the series is non-stationary in the seasonal component,

the non-seasonal component or both.

It is possible to detect seasonality by looking at the ACF plot, if this plot shows periodic spikes in

intervals ofm lags, then there is seasonality in the series of periodm. It is often the case that seasonality

is already known to exist in the data, as well as its period.

After identifying seasonality, one fits an ARIMA(0, 0, 0)× (P,D,Q)m model to the data and then fits

an ARIMA(p, d, q)× (0, 0, 0) model to the residuals of the fit. By using the residuals of the fit as a new

series and looking at its correlation plots it is possible to see the information that is not already explained

by the seasonal part of the model. This is the same as fitting an ARIMA(p, d, q) × (P,D,Q)m model

to the original series, nonetheless it is advantageous to fit the seasonal and non-seasonal part of the

model separately, in order to better determine the model’s parameters.

There are several tests that can be used to determine whether a series is stationary or not, the PP

test [39] the KPPS test [40] and the ADF test [41]. These tests do not give full certainty of stationarity,

instead they use null hypothesis testing [42,43] to determine the probability of an hypothesis being true

(e.g. H0: the series is stationary). From this probability one can know with a degree of confidence if the

series is stationary, but never be 100% sure. In addition, it is also possible to determine if a series is

non-stationary from its ACF plot, non-stationary time series are characterised by slowly decaying ACF

plots.

If after testing it is determined that the series is non-stationary, [38] advises differencing the series
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until stationarity is obtained. In this way, one can determine the parameters d and D.

This method of achieving stationarity has been found to fit the data worst than other methods of

achieving stationarity, this is caused by over or under differencing [44]. There are other ways to achieve

stationarity, [45] found that log or power transforms perform better than differencing in some situations,

and in [44] the authors suggest adding AR(p) and MA(q) terms to compensate for respectively for under

and over differencing.

Another way of making a series stationary is to de-trend the mean. This can be done by fitting

a straight line through the data (linear de-trending) and subtracting it to the series. In practise it is

possible to use any type of function to de-trend the data not just linear functions. It is also possible

to use more complex and more accurate de-trending methods such as the Hodrick and Prescott filter

(HP-filter) [46, 47], the bandpass filter of Baxter and King [48], or the Christiano-Fitzgerald filter [49].

De-trending the series mean has to be done before fitting an ARMA(p, q) model to the data, as a result

this is a mixed model which does not use differencing.

Once the residuals of a fit are made to be stationary and non-seasonal, the next step is to fit an

ARMA(p, q) model to the remaining residuals. To fit an ARMA(p, q) to a time series it is first necessary

to choose the values for p and q, [50] recommends the use of the AICc to choose the best fit. Choosing

the model based on AICc involves fitting multiple model for different combinations of p and q and choos-

ing the model which results in the lowest AICc. This method results in the best fit for the training data

but it requires fitting multiple models, which is computationally expensive. In addition, the model which

best fits the data may not be the one that provides the best predictions for the test set (overfitting).

As an alternative, the model can be fitted manually by looking at the ACF and PACF plots and

choosing p and q. From propositions 2.6.1 and 2.6.2 it follows that q is the order of the lag after which

the ACF plot falls below the significance level and p is the lag after which the PACF plot falls below the

significance level [44,51]. The concept of significance level is described in Appendix A.

After determining the order of the model it is necessary to estimate the model’s parameters φ1, . . . , φp

and θ1, . . . , θq.

Pre-estimation of the parameters can be done using Yule-Walker estimation, Burg’s algorithm, the

innovations algorithm, or the Hannan-Rissanen algorithm [50]. Estimation of the parameters is usually

done using maximum likelihood estimation [50]. The resulting problem is an optimisation problem which

can be solved using optimization theory.

2.6.4 STL decomposition

Given a times series which is non-stationary in its seasonal component, it is difficult to make the

series stationary without resourcing to differencing (which as shown in [45] is not optimal). There is

however another way of modelling non-stationary seasonal time series without resourcing to S-ARIMA
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models. This method is called Seasonal Trend decomposition using Loess (STL) and was introduced in

[52], it is part of a larger set of models whose main idea is to decompose the time series into a seasonal

component and seasonally adjusted component (trend). The specifics of the decomposition fall beyond

the scope of this text, but can found in [52, 53]. After decomposing the time series both components

can be modelled and forecasted separately. “To forecast a decomposed time series, we separately

forecast the seasonal component and the seasonally adjusted component. It is usually assumed that

the seasonal component is unchanging, or changing extremely slowly, and so it is forecast by simply

taking the last period of the estimated component. In other words, a seasonal naı̈ve method is used

for the seasonal component” [52]. “To forecast the seasonally adjusted component, any non-seasonal

forecasting method may be used including the ARIMA model, random walk with drift model, or Holt’s

method. [53]”
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3.1 Introduction

This chapter introduces a load balancing algorithm with the objective of reducing the number of

unsatisfied users in the network. A theoretical description of the proposed algorithm is given followed

by a number of simulations which aim to validate the concept, as well as to explore its strengths and

weaknesses. The proposed algorithm was inspired by [20,24].

3.2 Algorithm description

The proposed algorithm focuses on balancing load between intra-RAT, intra-frequency cells in LTE.

The algorithm was designed to work with LTE, however the proposed concepts can be applied to other

radio technologies.

The basic working principle of the algorithm is as follows:

1. Each cell measures its own load and reports it to its neighbours;

2. Each cell collects the load measurement reports from its neighbours;

3. The load measurements are used to calculate the load imbalance between a cell and its neigh-

bours;

4. The imbalance is used to adjust the A3 event offset;

5. The change in A3 event offset leads to handovers which unload traffic from a loaded cell to its less

loaded neighbours;

6. The whole process is repeated indefinitely with a frequency F .

Figure 3.1 shows the basic working principle of the algorithm.

Figure 3.1: Graphic description of the algorithm.
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3.2.1 Load measurements

The proposed algorithm uses as an indirect load measurement, the number of unsatisfied users in a

cell at a given time. The number of unsatisfied users is given by the number of users whose throughput

is below the minimum required bitrate for each user. More formally:

Load =
∑
u ∈ U

1tu<Du
, (3.1)

where Du denotes the user’s minimum required bitrate, tu the user’s current throughput, and 1tu<Du

is an indicator function which equals one if the user’s throughput is below the requirement and zero

otherwise.

By using the number of unsatisfied users as a load measurement, it is possible to minimise this

quantity directly. This load measurement is also a performance metric since the less unsatisfied users

in a cell the better.

This particular load measurement was chosen because the relation between direct load measures

(such as percentage of used PRBs) and the network performance is not linear. It is possible for the

network to be using all of its resources and still be performing well from the users’ perspective. By

using the number of unsatisfied users as the load measure, the networks load can be tied directly to its

performance. In addition, in the simulation phase (Section 3.3), for the sake of keeping computational

costs down, the traffic model used for all the UEs was the full-buffer traffic model. This simplification

leads to all of the network’s PRBs being utilised at all times, as a result, using the percentage of used

PRBs or other related quantities makes little sense.

3.2.2 Calculating load imbalance

After each cell measures its own load and its neighbours load, it is necessary to determine the load

imbalance between a cell and its neighbours.

Different vendors allow for the setting of the A3 event offset on a cell basis or on a neighbour relation

basis, this will affect the manner in which the load imbalance between a cell and its neighbours is

calculated.

If the A3 event offset can only be set on a cell basis the load imbalance of a cell is given by:

∆l =
Load− f(Loadn1

, Loadn2
, ..., LoadnN

)

Load
× 100% , (3.2)

where ∆l is the load imbalance, Load is the load of the cell, Loadn1 , Loadn2 , ..., LoadnN
are the loads of

the neighbouring cells and f(·) is a function that aggregates the load measures, e.g. mean or maximum

value.
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If the cell’s load is zero, the imbalance is considered to be zero, this design decision is very important

because it:

1. Prevents two cells from adjusting their handover offsets simultaneously in opposite directions,

causing the effective offset between the two to be twice as large;

2. Constrains the effect of the load balancing algorithm to the overloaded cell and its neighbours,

preventing undesired handovers between two not overloaded cells simply because one of them is

neighbouring an overloaded cell.

If the A3 event offset can be set per neighbour relation the load imbalance is given by:

∆l =
Load− Loadn

max(Load, Loadn)
× 100% , (3.3)

where Load and Loadn are the loads of the cell and its neighbour respectively. The imbalance is nor-

malised with the respect to the maximum of the two loads in order to obtain symmetrical offsets from the

perspective of the two cells in the neighbouring relation.

Note that cells more loaded than its neighbours will have positive load imbalances and cells less

loaded than its neighbours will have negative load imbalances.

To avoid dividing by zero, if both of the cell’s load is zero then the imbalance is said to be zero.

3.2.3 Adjusting the A3 event offsets

After having calculated the load imbalance between a cell and its neighbours, it is necessary to adjust

the handover offsets which will lead to a better load distribution. Section 3.2.3.A specifies how to adjust

said offsets on a per cell basis and Section 3.2.3.B on a per neighbour relation basis.

3.2.3.A Per cell offset adjustment

If the offset adjustment is to be made on a per cell basis, then by setting the offset and frequency

specific offsets in equation (2.6) to zero, it comes that the A3 event entering condition is:

Mn+Ocn−Ms−Ocs−Hys > 0 . (3.4)

In this case every cell will adjusts its offset Ocs independently. From the cell’s perspective, Ocn is the

Ocs of the neighbouring cell being considered in the A3 event.
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3.2.3.B Per neighbour relation offset adjustment

If the offset is to be adjusted on per neighbour relation, then by setting the cell and frequency specific

offsets to zero in equation (2.6), it comes that the A3 event entering condition is:

Mn−Ms−Off −Hys > 0 . (3.5)

In this situation the offset Off will be adjusted, this offset only refers to the neighbour relation be-

tween the two cells being considered in the A3 event.

Note that in both cases the offsets that were set to zero need not be zero, however these will not be

adjusted by the algorithm and may interfere with its performance.

3.2.3.C Incrementing the offsets

From equations (3.4) and (3.5) it can be deduced that if a cell is overloaded with respect to a neigh-

bour, the offset Off of the relation or its offset Ocs must decrease in order to make the cell look less

appealing in the power domain, and cause the UEs to enter the A3 event sooner.

In order to do this, the algorithm will increment these offsets in a recursive manner using a stair

function. The function can have has many steps as needed and the steps may have whichever height is

found optimal. An example function is shown in Figure 3.2:

Figure 3.2: Stair function.

The parameters t1, t2, ..., tk denote thresholds after which the increments i1, i2, ..., ik will be added to

the cell’s or neighbour relation offset.

With this function, if the imbalance of a cell is positive then its offset decreases in order to make

the perceived signal from this cell seem weaker, this will trigger the UEs at the cell’s edge to request
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handovers to neighbouring cells.

To prevent an indefinite increase/decrease in the offset which could lead to RLFs, the maximum

absolute offset value is curbed at a value Maxoffset. In reality there could be another way to prevent

RLFs without curbing the offset, such as adding to the feedback controller a gain controller which would

control the increment based on the number of RLFs in the cell, however, this was left for future work.

3.3 Simulation

To validate the proposed algorithm, several simulations were conducted using the Vienna LTE Sys-

tem Level Simulator [1]. Documentation on how to use the simulator can be found in [54].

This simulator works on the system level, meaning that it simulates multiple UEs and multiple eN-

odeBs at the TTI level. In LTE, one TTI corresponds to one millisecond, meaning that for each simulated

millisecond the simulator calculates the channel conditions for each UE and performs the scheduling of

PRBs in each eNodeB.

This level of detail proved to be too computationally expensive for the desired objectives, as a result

several changes had to be made to the simulator in order to make the simulations computationally

feasible.

3.3.1 Changes made to the simulator

This section gives a brief overview of the changes implemented in the simulator, either for improving

performance or to achieve the desired simulation objectives.

3.3.1.A Macroscopic channel recalculation

The macroscopic channel includes the pathloss and shadow fading components of the channel

model. In the simulator, for each UE all of the channel components are recalculated each millisec-

ond, however, in reality, the macroscopic large-scale channel conditions do not change significantly on

this time scale. This means that there are computational resources being spent on recalculating the

same value, or very close values, repeatedly when it is not necessary.

According to [55] the optimal distance over which to calculate the local average power of the signal

is between 20-40 wavelengths. This is finding is based on the 90% confidence interval with less than 1

dB of error in the estimate.

Because of this, the possibility to only recalculate the macroscopic channel conditions in fixed time

intervals was implemented. For example, the macroscopic channel conditions are calculated at time 0

ms and remain constant until time 200 ms when they will be recalculated. This feature allows to speed
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up the simulation significantly since the macroscopic channel recalculation took a large portion of the

simulation time.

3.3.1.B Handover module

The simulator did not have handover implemented, UEs remained permanently connected to their

initial cell regardless of the received power.

Since adjusting handover parameters is the key concept of the proposed load balancing algorithm, an

handover module had first to be implemented. The implemented handover module has all the features

described in section 2.4.2, with configurable parameters including:

• Handover hysteresis;

• Time-to-trigger;

• Handover Offsets (Cell, frequency and neighbour relation specific offsets);

• Handover filter coefficient.

All of these parameters can be configured by the user, even though some of them will be changed

by the load balancing algorithm. This module greatly increases the simulator’s capabilities and allows

for much more realistic simulations.

3.3.1.C User walking/driving models

The only walking/driving model available in the vanilla simulator, apart from all UEs reaming still, was

the random walk model, where at each TTI the UEs move in random directions independent of their

movement in the previous TTI. This model is not realistic since in reality the users’ movement tends to

be deliberate and not random.

To validate the load balancing algorithm it was necessary to create load imbalances in the network

while using credible walking/driving models for the users. With this in mind, several new walking/driving

models were introduced in simulator along with some extra features. These models and features are

listed below:

• The ability for users to turn around once they reach the simulation’s edge (before UEs were tele-

ported to a random point);

• The random way-point walking model, where each UE chooses a random direction and moves in

that direction until it reaches the simulation’s edge, where it will ricochet and continue moving in

the new direction;
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• The hotspot walking model, where users move in the direction of one or more hotspots until they

get there. On arrival, if there is more than one hotspot, the users pick another hotspot at random

and move in its direction. The hotspots are predefined simulation parameters;

• The Manhattan walking model, where users move in a predefined square grid. At an intersection

each of the four directions has an associated probability that the user will choose said direction.

These probabilities are configurable simulation parameters, and can be tuned to create hotspots

or other imbalanced load distributions. In this model, the UEs are only allowed to move in the grid.

In the end, only the last of the implemented models was used since it was the closest to the reality

of user movement in an urban environment.

3.3.1.D General optimisation

To improve the performance of the simulator, several code optimisations were made to the simulator.

These optimisations do not change the behaviour of the code but improve the running time and memory

used to simulate. The optimisations were made based on information returned by the MATLAB profiler,

and are basically the optimization of loops and function calls.

The combination of this optimisation with the macroscopic channel recalculation in larger intervals

led to a considerable decrease in simulation times. Simulation which before had estimated completion

times of weeks, now take only days. It is estimated that simulator became over 10 times faster than

before. As for memory, the result file size decreased from around 20 GB to around 400 MB (for the

desired simulations).

3.3.1.E Load balancing algorithm

Lastly, the load balancing algorithm described in Section 3.2 was implemented in order to test its

performance against the case where no load balancing is used. The implementation of the algorithm

contains a module that measure each cell’s load and another that adjusts the handover offsets based

on the measurements performed.

3.3.2 General parameters

In this section, the general parameters used in the simulations are presented. In Table 3.1 some

macro parameters used in the simulations are shown.

As the bandwidth increases, the simulation’s run time increases due to the scheduler having more

PRBs to allocate. As a result, the bandwidth is only 1.4 MHz in order to keep computational costs down.

As for the network configuration, the simulated network was composed of an hexagonal grid made

up of 7 sites, 21 cells and 420 UEs (20 per cell). The UEs were assumed to be in vehicles with a speed
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Table 3.1: Simulation’s general parameters.

Frequency 2.14 GHz
Bandwidth 1.4 MHz
Mode SISO
Transmit Power 43 dBm

of 50 km/h. Overlaying the network, a square grid of streets was placed with blocks of 200 metres.

Figure 3.3 shows the initial configuration of the network.

Figure 3.3: Initial UE distribution in the simulation plane.

When the UEs reach an intersection they will randomly select a new direction to move in. The

probability of choosing each direction is an adjustable simulation parameter.

All of the UEs have a full buffer traffic model, meaning UEs always have bits to send. This simplifica-

tion is necessary in order to keep computation costs down.

The simulation time was 1 minute corresponding to 60000 TTIs, this allows for the UEs to demon-

strate some mobility during the simulation. Since the simulator works beyond real time these simulations

took about 9 hours to complete with the available hardware.

3.3.3 Channel model

The used channel model is made of three components:

48



• Macroscopic pathloss;

• Shadow fading;

• Fast fading or small scale fading.

The first two components fall under the category of slow fading since they vary slowly with time.

Meaning the signal frequency is significantly larger than the frequency of variations in the slow fading

attenuation.

The macroscopic pathloss model used was the COST231 extended Hata model for urban environ-

ments specified in [56].

The shadow fading model used was the Claussen model [57] which generates a log-normally dis-

tributed two dimensional spatially-correlated shadow fading map. The distribution used had a mean of 0

dB and a standard deviation of 8 dB. The standard deviation chosen falls in the middle of the interval of

typical values determined empirically by several different authors [58].

The slow fading part of the channel was recalculated every 20λ which at a UE speed of 50 km/h

results in recalculating the channel every 202 TTIs.

The fast fading model used was the Vehicular A model specified in [59], in addition 7 dB of extra

penetration loss was added to account for the UEs being inside vehicles.

3.3.4 Mobility parameters

The handover time-to-trigger parameter was set to 40 milliseconds and the handover filter coefficient

was set to k = 4 [15].

For the case where no load balancing is used the handover hysteresis is set to 1 dB. This is Ericsson’s

recommendation for cases of high load [15].

For the case where load balancing is used the handover hysteresis is set to 4 dB in order to prevent

the algorithm from causing an increase in ping-pong handovers.

Note that even though the handover hysteresis parameter is different for the two cases, this corre-

sponds to giving the best chance at a good performance for each case (this was verified during the

simulation phase). This means that the performance of the network when no load balancing algorithm

is used is better when the hysteresis is 1 dB rather than 4 dB, and that the performance of the network

when the load balancing algorithm is used is better when the hysteresis is 4 dB rather than 1 dB.

3.3.5 Measuring performance

To measure the performance of the load balancing algorithm it is necessary to compare it to the case

where no load balancing was used. Some comparison metrics for the gain of the algorithm must be
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established.

The metrics used to compare the two cases were:

• The percentage difference of unsatisfied users in the network between both cases:

Gain =
Unsatisfied Usersno LB − Unsatisfied UsersLB

Total UEs
× 100% . (3.6)

• The total number of ping-pong handovers, this is defined by an UE reconnecting to the same cell

within a 5 second interval after disconnecting.

Since the number of unsatisfied users varies significantly with time, it is necessary to look at the plot

that shows its evolution over time.

The gain will vary over time so it necessary to look at the distribution of gain (box plot) in order to have

a better understanding of the model’s performance. Aggregate measures for the distribution over time

such as the mean, median, quantiles, maximum and minimum may also be used to compare multiple

results simultaneously.

The goal of the algorithm will therefore be, to maximise the gain while not significantly increasing the

number of ping-pong handovers.

3.3.6 Load balancing algorithm parametrisation

The base parametrisation chosen for the load balancing algorithm described in Section 3.2 is shown

in Table 3.2:

Table 3.2: Load balancing algorithm base parametrisation.

Load balancing frequency (F ) 250 TTI (0.25 seconds)
Step function: t = [t1, t2, ..., tk] t = [20, 30, 40, 50, 70]
Step function: i = [i1, i2, ..., ik] i = [0.5, 1, 1.5, 2, 2, 5]
Maximum Offset (Maxoffset) 5 dB
Minimum required bitrate (Du) 12.2 kbps [60]
Type of load balancing per neighbour relation

As a result of all users having the the same full-buffer traffic model, the minimum required bitrate Du

is the same for every user. Therefore, the correct choice of this parameter is key to obtain good results,

too low and the algorithm will never be triggered since there will never be unsatisfied users, too high and

there will be no difference between using and not using the algorithm since all users will be unsatisfied

all the time. In a more realistic scenario each user has its own unique requirement depending on a given

service, however this was not the case in the simulated scenarios.

Note that, during simulation, the minimum required rate does not equal to the rate the user will
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request, the full-buffer traffic model implies that the UE will use all available resources if given the op-

portunity.

The default minimum required bitrate Du chosen was 12.2 kbit/s which is the maximum rate of a

Voice over LTE (VoLTE) call using the Adaptive Multi-Rate (AMR) audio codec [60].

3.3.7 Results

In this section the simulation results for different scenarios are presented.

Section 3.3.7.A presents the base simulation results. In order to avoid the huge amount of simulations

that stems from combining all the varying degrees of freedom available, these degrees of freedom were

varied independently in relation to the base simulation. Meaning that unless mentioned otherwise, every

parameter of the simulation is the same as the base simulation. This includes the general simulation

parametrisation, network configuration, driving model and algorithm parametrisation.

In Section 3.3.7.B the load balancing algorithm’s parametrisation varies, specifically, the maximum

allowed offset of the neighbour relation varies.

In Section 3.3.7.C the UEs’ the algorithm is tested under a different driving model. In this simulation

the UEs have an equal probability of choosing any direction when they get to an intersection. As a result,

no hotspot is formed and the UEs can be said to be random walking/driving within the constraints of the

grid.

In Section 3.3.7.D the overall load of the network varies, meaning that the total number of UEs in the

network is varied.

In Section 3.3.7.E the minimum required service that must be offered by the network varies, two

different services with considerably higher minimum required bit-rates than VoLTE are tested.

In Section 3.3.7.F the handover offsets are adjusted per cell instead of per neighbour relation. This

simulation aims to test the difference between the variations of the algorithm presented in Section 3.2.2.

3.3.7.A Hotspot (base simulation)

This simulation aims to test a scenario where there is a high load and high mobility combined with an

uneven load distribution. To achieve this the UEs probability of a choosing the route that will take them

faster to the center of the network was set to 0.8, as a result the initial network configuration shown in

Figure 3.3 will converge to an hotspot as the simulation runs. The final network configuration is shown

in Figure 3.4:

This simulation uses the default load balancing parametrisation described in Section 3.3.6. The

evolution of unsatisfied users over time is shown in Figure 3.5, where the orange curve is the percentage

of unsatisfied users over time using load balancing, the blue curve is the percentage of unsatisfied users
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Figure 3.4: Final UE position (Hotspot).
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over time not using load balancing, and the coloured lines represent the time averages of the curves

with the same colour.
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Figure 3.5: Percentage of unsatisfied users over time.

From Figure 3.5 it can be seen that the percentage of unsatisfied users in the network grows for both

cases as the hotspot forms, however, in the case where the load balancing algorithm was employed

this number grows slower. This means the algorithm serves its purpose of minimising the number of

unsatisfied users in the network. In addition, it can also be observed that the algorithm’s performance

increases as the load concentrates and is maximal when the hotspot is formed.

To get a better understanding of the algorithm’s performance it is necessary to look at the distribution

of the gain over time. From Table 3.3 and Figure 3.6 it can be seen that the algorithm performs well, in

fact on average the algorithm has a gain of 1.3% (that is 1.3 % less unsatisfied users), during 75% of

the time the algorithm performs equally or better than the case where no load balancing was used, and

the maximum gain (8.8%) greatly outweighs the algorithm’s worst performance (-2.4%).

Table 3.3: Gain distribution.

Mean Min 25 % Quantile Median 75 % Quantile Max
Gain (%) 1.3 -2.4 0 0 2.4 8.8

As for the number of handovers and ping pongs:

• Without load balancing the number of handovers was 1375 and the number of ping-pongs was 60;

• With load balancing the number of handovers was 1361 and the number of ping-pongs was 75.

Therefore, it can be concluded that the algorithm’s usage does not significantly increase the number of

regular and ping-pong handovers.
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Figure 3.6: Gain distribution’s box plot.

In the following sections, in order to present results compactly only the mean and maximum gains

will be presented, since these are representative of the overall performance and the performance when

the hotspot is formed. In addition, all of the following simulations will be similar to this one except for one

varying parameter which is the one under analysis.

3.3.7.B Varying parametrisation

In this section the base simulation was kept changing only the load balancing algorithm’s parametri-

sation, specifically the parameter Maxoffset which dictates how much the algorithm is allowed to move

the handover offset by. This parameter was allowed to take the values [1, 2, 3, 4, 5, 6, 7, 8, 9] dB, the

simulations were run and then compared with the base simulation where no load balancing was used.

The results for the variation of the mean gain, maximum gain and number of ping-pongs with the

variation of the Maxoffset parameter are show in Figures 3.7(a) and 3.7(b).

From Figure 3.7(a) it can be seen that the mean gain peaks when Maxoffset is 6 dB, however, from

Figure 3.7(b) it can concluded that as this parameter increases, the number of ping-pongs increases

exponentially, even doubling between 5 and 7 dB. Because of this, it is safe to assume that the optimal

value of the parameter Maxoffset is a low one closer to 4 dB, since for higher values the number of

ping-pongs increases too drastically and the variation of this parameter seems not to have a significant

impact on the algorithm’s gain.

If however, the load balancing algorithm was working in conjunction with a mobility robustness op-

timisation algorithm, this parameter would not be a concern since the mobility robustness optimisation

algorithm would curb it when the number of ping-pongs increased.
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Figure 3.7: Result of varying the algorithm’s Maxoffset parameter.

3.3.7.C Random walk

In this simulation the UE’s mobility model was changed so that the probability of choosing any direc-

tion at an intersection is 1/4. This causes the UEs to move randomly across the simulation area and

not converge to the centre. As a result, there is an even load distribution across the simulation plane,

meaning that the initial and final UE distribution in the simulation plane will look similar to Figure 3.3.

Figure 3.8 shows the percentage of unsatisfied users over time with and without load balancing.
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Figure 3.8: Percentage of unsatisfied users over time.

From Figure 3.8 it can be seen that there is not much load to be distributed and hence it can be con-

cluded that in the case where the load is already balanced the algorithm marginally decreases network
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performance. Even though the decrease in performance is not significant, it can be concluded that there

is no point in employing the load balancing algorithm in cases where there is no load to be balanced.

3.3.7.D Varying load

In this section the performance of the algorithm will be tested under different network load configu-

rations. Since the traffic model used in the simulations is the full-buffer model, the network’s load will

always be 1, that is full utilization of network resources. Because of this, it is necessary to introduce

the concept of virtual load [24, 61], the virtual load of the network is the amount of PRBs necessary

to serve Nu users with a given minimum rate Du given MPRP available PRBs and a spectral effi-

ciency R(SINRu). Equation (3.7) expresses the virtual load as function of these parameters, where

BW = 180 kHz is the bandwidth of one PRB in LTE.

ρ̂ =
1

MPRB
×Nu ×

Du

R(SINRu)×BW
. (3.7)

Note that even though the number of users Nu and the minimum required rate Du are constant,

because the load of the network is not balanced, it varies over time depending on the cell. As a result it

is necessary to look at two cases:

• The case where the load is fully distributed: MPRB = 21× 6 ;

• The case where the load is fully concentrated in a hotspot MPRB = 6 .

Where 6 is the number of available PRBs for one cell using a bandwidth of 1.4 MHz and 21 is the

number of cells in the network. The spectral efficiency R(SINRu) was taken from the simulations’

results. If the virtual load of the network is greater than one, than this means that the network needs

more resources to serve its users at the rate Du than it actually has. For example, if ρ̂ = 2 than the

network needs twice the resources it has to be able to properly serve its users.

The number of UEs/cell was set to [10, 15, 20, 25], the simulations with and without load balancing

were run, and the respective virtual loads were calculated. The mean and maximum gain of the load

balancing algorithm for each one of the load configurations is plotted in Figures 3.9(a) and 3.9(b).

In Figure 3.9(a) the x axis is expressed in terms of UEs/cell (there are 21 cells in the network) and in

Figure 3.9(b) the x axis is expressed in terms of both the network’s overall virtual load and the hotspot’s

virtual load (concentrated load).

From these results it can be seen that the gain of the algorithm grows as the network load increases,

in fact the gain is maximum when the concentrated virtual load is thrice what the network can bare.

To better explain why this is the case, Figures 3.10(a) and 3.10(b) shows the evolution over time in

the percentage of unsatisfied users for a load of 10 UEs/cell and 25 UEs/cell.
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Figure 3.9: Algorithm gain as a function of the network load.

0 10 20 30 40 50 60

time (s)

0

0.5

1

1.5

2

2.5

3

U
n

s
a

ts
fi
e

d
 U

s
e

rs
 (

%
)

Without load balancing

With load balancing

(a) 10 UEs/cell

0 10 20 30 40 50 60

time (s)

0

5

10

15

20

25

30

U
n

s
a

ts
fi
e

d
 U

s
e

rs
 (

%
)

Without load balancing

With load balancing

(b) 25 UEs/cell

Figure 3.10: Percentage of unsatisfied users over time.

57



It is possible to see from these figures that when there is not enough load to balance the algorithm’s

room for improvement is small, on the other hand, when the network’s load high the algorithm can

balance it, achieving very positive results when compared to the case where no load balancing is used.

3.3.7.E Varying service

In this section the algorithm will be tested for different minimum required bitratesDu while maintaining

the same load as the base simulations. In order to do this, equation (3.7) is used to calculate the new

number of UEs in the network that produce the same virtual load as the base simulation whilst varying

Du and MPRB (R(SINRu) is assumed to be constant).

Two simulations were run for two different guaranteed bitrate services, audio at 160 kbps and video

H.264 720p at 2.56 Mbps.

For the audio simulation, the bandwidth of the simulation was increased to 10 MHz corresponding to

50 PRBs and the minimum required bitrate Du was set to 160 kbps. Afterwards, by keeping the same

load and spectral efficiency as in the base simulation, equation (3.7) gave Nu = 13 UEs/cell.

For the video simulation, the bandwidth of the simulation was increased to 20 MHz corresponding to

100 PRBs and the minimum required bitrate Du was 2.56 Mbps. Again, by keeping the same load and

spectral efficiency as in the base simulation, equation (3.7) resulted in Nu = 2 UEs/cell.

In Figures 3.11(a) and 3.11(b) the algorithm’s performance for the audio simulation is shown.
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Figure 3.11: Simulation results for 160 kbps audio.

From these figures it can be seen that the algorithm has positive results. The mean and maximum

gain of the algorithm were respectively 1.5% and 8.1%.

The number of handovers with and without load balancing was 928 and 898 and the number of
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ping-pong handovers was 32 and 34 respectively.

Despite these positive results, they are worst than the results for the base simulation, this is explained

by having the same load concentrated in less points (UEs) which makes it harder for the algorithm to

balance it effectively. As it will be showed for the video simulation, if the load is too concentrated in a few

points, the algorithm will have trouble performing well.

In Figures 3.12(a) and 3.12(b) it is shown the algorithm’s performance for the video simulation.
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Figure 3.12: Simulation results for 2.56 Mbps video.

From Figure 3.12(a) it can be seen that the algorithm has a similar performance to the case where

no load balancing is used, in fact, the mean gain was -0.2%.

From Figure 3.12(b) it can be seen that the maximum and minimum gain are somewhat meaningless

due to the high spread in gain, in addition, from Figure 3.12(a) it can be concluded that setting the min-

imum required bitrate to 2.56 Mbps might be unreasonable for LTE since the percentage of unsatisfied

users is rounding 15%.

The number of handovers with and without load balancing was 156 and 136 and the number of

ping-pong handovers was 34 and 6 respectively.

As previously mentioned, when the load is concentrated in just a few points the algorithm does not

perform well, this simulation further proves this point by taking this to extreme where the load which was

previously distributed by 420 UEs is now concentrated in 42 UEs.

3.3.7.F Per cell offset adjustment

In this section the handover offsets were adjusted on per cell basis instead of a per neighbour re-

lation basis. The procedure is defined in Section 3.2.3. The aggregate function used to express all of
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the neighbour’s load into one value to be used by the load balancing algorithm was the mean of the

neighbours’ load. The maximum of the neighbours’ load was also tested but it presented a performance

equivalent to the case where no load balancing was used, hence, the results regarding said simulation

are not presented here.

Figure 3.13 shows the evolution of unsatisfied users over time when no load balancing was used,

when load balancing was used on a per neighbour relation basis and finally when load balancing was

used on a per cell basis.
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Figure 3.13: Percentage of unsatisfied users over time.

From Figure 3.13 it can be seen that for this particular configuration, the load balancing algorithm

on a per neighbour relation basis and on a per cell basis have similar performances, in fact the average

percentage of unsatisfied users for both cases is similar. This is an important result because some

vendors only allow the adjusting the handover offsets per cell and not per neighbour relation, thus this

result proves that the algorithm can be used with positive results across different vendors. Nonetheless,

it is not known if this equivalence in performance regarding both cases can be extended for other network

configurations and mobility models.
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4.1 Introduction

In this chapter the forecasting methods described in Section 2.6 are applied to real data from an

UMTSs network, the data contains daily observations of the average and maximum number of CEs

used in each cell of the network covering a period of seven months.

There is data available for 86 different cells, each cell is identified by an unique cell ID, for each cell

the data also contains its maximum available CEs (limit capacity). The data was provided by Celfinet®.

in the context of the professional internship in which this work was inserted.

Since the end goal of forecasting is to determine when system capacity is exceeded, the chosen

forecasting variable was the daily maximum utilisation of CEs.

Figure 4.1 shows the evolution of maximum used CEs over the seven month period for cell A. The

red line represents the maximum CE capacity of the cell.

Figure 4.1: CE utilisation over time.

It can be seen from Figure 4.1 that the data shows strong weekly seasonality, meaning a similar

pattern every 7 days. The traffic is greater during the week and falls on Saturday and Sunday. This is

typical behaviour of a cell covering a business area. Similar behaviour was observed for every one of

the other 85 cells. This led to the conclusion that the data has a seasonality with period 7.
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The data was divided into a training and test set, the training set comprises of the fist five months of

the data (70%) and the test set the last two (30%), this means that the forecasting horizon is two months.

The following models were applied:

• Average method;

• Naı̈ve method;

• Seasonal Naı̈ve method;

• Seasonal ARIMA;

• STL decomposition.

For the seasonal models the seasonal period used was 7. In addition, for models that allow the use

of external regressors a binary array denoting whether a given day was an holiday or not was used in

order to increase accuracy.

When fitting the S-ARIMA model a controlled automated fit was used, the seasonal differencing

parameter D was set to 1 and then a model search based on the AICc criterion was performed. In the

STL decomposition model an ARIMA model was used to forecast the trend, this model was again fitted

automatically using the AICc criterion.

4.2 Results

The code for this section was developed in R [62] using the the following additional packages: [63–

68].

This section presents the forecasting results obtained for cell A using the different forecasting meth-

ods mentioned before. When using forecasting methods, it is key to visualise the data and make a

graphical evaluation of the obtained results.

Figures 4.2 and 4.3 show the forecasting results for the average and naı̈ve methods respectively. The

blue line represents the forecasts and the black/red line the actual recorded observations. The shaded

regions represent the 80% (dark blue) and 95% (grey) confidence intervals of the forecast. Both these

methods are very simple, the first simply predicts the average value of the observations, and the second

simply predicts the value of the last observation. Because of this, the expectation for the obtained results

was never vary high, however, even though both methods predict a constant value, the average method

gives much narrower and seemingly more accurate confidence intervals.

Figure 4.4 shows the forecasting result for the seasonal naı̈ve method. This method always predicts

the last observed period, it is possible to see that just adding a seasonal component to the model greatly

increases accuracy of the forecast. However, this method still has large and increasing confidence
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Figure 4.2: Forecast using the average method.

Figure 4.3: Forecast using the naı̈ve method.
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intervals, this large level of uncertainty invalidates the accuracy of the results since the method itself

states that these cannot be trusted.

Figure 4.4: Forecast using the seasonal naı̈ve method.

Figure 4.5 shows the forecasting result for the S-ARIMA method. This method further narrows the

confidence intervals of the forecast when compared with the seasonal naı̈ve method. This method

presents both good accuracy of the forecast and narrow non-increasing confidence intervals, making it

far superior to the previous methods.

Figure 4.5: Forecast using the Seasonal ARIMA method.

Figure 4.6 shows the STL decomposition of the training set, from top to bottom, it shows the se-

ries, its seasonal component, its trend component and the residuals. As stated in Section 2.6.4, when

forecasting the seasonal component is forecasted by the naı̈ve method and the trend component by

the ARIMA method. This forecast are then summed to obtain the final forecast. This method’s main

advantage over S-ARIMA is that it allows for a more clear and intuitive visualisation of the data. By
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decomposing the data in seasonal and trend components it becomes easier to visualise the relative

importance and evolution of these components over time.

Figure 4.6: STL decomposition of the training set.

Figure 4.7 shows the forecasting result for the STL decomposition method. This method shows a

similar performance to the Seasonal ARIMA method.

After comparing the methods graphically, it is important to look at the error measures in order to de-

termine which method actually performed better. Table 4.1 shows the forecasting errors for the different

forecasting methods when applied to cell A.

Table 4.1: Forecasting errors for different methods

Method MAE RMSE MAPE (%) MASE
Average 11.54 11.89 28.74 1.15

Naive 8.01 12.87 28.16 0.88
Seasonal Naive 10.36 13.84 24.79 1.14

ARIMA 5.52 6.55 13.66 0.61
STL 5.71 6.71 13.61 0.63

In this case, since the time series is never 0 or close to 0, the MAPE can be used to compare different

models and their performances on different time series. From Table 4.1 it can be seen that Seasonal

ARIMA and STL perform best with an error of 13.6%, and narrow confidence intervals.

The simpler forecasting methods all achieved errors greater than 20%, however, apart from the

seasonal naı̈ve method, the confidence intervals are too wide for the models to be considered useful.
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Figure 4.7: Forecast using the STL decomposition method.

4.3 Aggregate results

To validate the results obtained for one cell it is necessary to prove that these models can be extended

to other cases. By applying all the aforementioned forecasting methods to every one of the 86 cells and

calculating the error measures, it is possible to get a sense of each method’s general performance.

Table 4.2 shows distribution of the MAPE across all the cells sorted by the forecasting method used.

Table 4.2: MAPE distribution across all cells sorted by forecasting method.

Method Mean Min 25% Quantile Median 75% Quantile Max
Average 39.24% 19.29% 26.84% 35.08% 49.37% 114.96%

Naive 44.45% 17.99% 27.84% 39.14% 52.42% 157.73%
Seasonal Naive 25.79% 14.09% 22.71% 24.58% 29.11% 40.99%

Seasonal ARIMA 15.57% 8.48% 11.62% 14.03% 17.14% 40.55%
STL 15.78% 9.14% 11.46% 14.04% 17.98% 41.21%

Figure 4.8 shows the results of Table 4.2, this time represented in box-plots.

From Table 4.2 it is possible to conclude that Seasonal ARIMA is the best forecaster followed closely

by STL decomposition both averaging a MAPE of about 16% across all cells. Both these methods show

a good performance considering the length of the forecasting horizon and can be used to know how

traffic will behave in the future with a considerable advance. In addition, these methods showed that

they are capable of performing well across several different cells with the exception of a few outliers.

Nonetheless, a more detailed analysis of the outliers instead of an automated fit, could prove to fix this

issue.
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Figure 4.8: MAPE box plots.
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4.3.1 Confidence intervals

In practical applications it is perhaps more important to look at the confidence intervals of the forecast

instead of the mean forecast. To compare the confidence intervals across different methods let us define

two measures:

1. Miss rate: the percentage of test set observations that fall outside the confidence interval.

2. Mean wideness: a measure for the average wideness of a confidence interval normalised with

respect to the forecast. This quantity is defined as:

1

N

N∑
i=i

upperi − loweri
forecasti

, (4.1)

where upperi andloweri are the upper and lower bound of the forecasting interval for each sample

i and forecastingi is the forecasted value for the same sample.

The first quantity measures the reliability of the confidence interval, that is, if the after the confidence

interval is plotted, how often did the observations fell outside the confidence interval. The larger the

percentage of test samples outside the confidence interval the more unreliable the interval is.

The second quantity measures the degree of certainty of the forecast, a wider confidence interval

means that there is larger degree of uncertainty regarding the forecast.

The quality of a forecasting method can then be measured by having a low miss rate and narrow

confidence interval (low mean wideness).

Figures 4.9(a) and 4.9(b) show the box plots of the miss rate and mean wideness across all cells for

the different forecasters under analysis for the 80% confidence interval.

Figures 4.10(a) and 4.10(b) show the same plots but for the 95% confidence interval.

By analysing the plots, it can be shown that the method which best combines a narrow confidence in-

terval with a low miss rate is the Seasonal ARIMA. With regards to the confidence intervals, the Seasonal

ARIMA method shows a much better performance than STL decomposition (the second best performing

method with regards to the MAPE). The confidence intervals are not only narrower on average, but the

miss rate is also considerably lower. Because of this, the S-ARIMA model was determined to be the

best of the methods under analysis, for the use case of traffic forecasting in a mobile network.
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(a) Miss rate. (b) Mean wideness.

Figure 4.9: 80% confidence interval.

(a) Miss rate. (b) Mean wideness.

Figure 4.10: 95% confidence interval.
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4.4 Practical considerations

In practical applications it is often the case the amount of data is limited, as a result it is important

to know how much data is necessary to have reliable forecasts. As mentioned before a reliable forecast

must not only have a low MAPE but also narrow confidence intervals and a low miss rate. Figure 4.11

shows how the test set MAPE, the 95% confidence interval miss rate and wideness vary with the amount

of data used to train the Seasonal ARIMA algorithm.

Figure 4.11: Variation of performance with data split point.

The plot is averaged over all cells, the y axis refers only to the MAPE as the other plots are overlaid.

The x axis is the fraction of the total data which was used to train the algorithm, note that if the training

set is X% of the total data than the test set over which the quality measures were calculated is (1−X)%

of the data, as a result the measured quantities should decrease not only as a result of an increase in

the training set but also from a decrease in the test set. The data was sampled with the training set

taking from 20% to 95% of the total data in intervals of 5%.

From Figure 4.11, one can see that the data split used before (70% / 30%) reaches a good compro-

mise between forecasting horizon length and forecast reliability.
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4.5 Special cases

In the previous sections the focus was on cells which could be considered to have normal behaviour.

However, there are some cases where external factors may lead to sudden spikes of traffic which cannot

modelled in the same way as before.

For example, a cell that covers a football stadium will have sudden spikes in traffic every couple of

weeks due to game days. Traffic in these days is no way similar to other days but could be predicted

since game days are previously scheduled events.

Figure 4.12 shows the daily HSPA traffic in MegaByte over 7 months in a cell that covers a foot-

ball stadium. In this case HSPA traffic was chosen as the forecasting variable to illustrate that these

forecasting methods are transversal to the type of forecasting variable.

Figure 4.12: HSPA traffic in a football stadium.

From Figure 4.12 it is clear to see the traffic spikes corresponding to the days where a match took

place.

To model this time series the Seasonal ARIMA method was chosen, as it proved to be the best

forecaster under study. In addition to the previous described methodology, the following steps were

taken:

1. A binary array was constructed denoting whether a day is a game day or not. Future game days
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can be known since these are scheduled events. This array was then passed to the algorithm as

an external regressor.

2. A Box-Cox transform was applied to the data in order to maintain the stability of the algorithm as

well as the validity of the results. The Box-Cox transformation is defined as:

x′α =
xα − 1

α
. (4.2)

If α = 1 (no transformation) the forecasts surrounding the spikes will take negative values (which is

impossible), if α is too close to 0, the confidence intervals will tend to infinity. As a result, adjusting

the alpha parameter is essential to obtain good forecasts. In this case α was chosen to be 0.4.

As before, the data was divided into 70% training set (5 months) and 30% test set (2 months).

Figure 4.13 show the result of the forecasting algorithm

Figure 4.13: HSPA traffic forecast in a football stadium.

The MAPE for the test set was 31.9%. The miss rates for the 80% and 95% confidence interval were

respectively 3.6% and 0%. The mean wideness for the same confidence intervals was 2.7 and 4.4.

These results are rather good considering that not all game days are similar and that traffic during

regular days is rather small which further increases the error.
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5.1 Summary

In Chapter 2 a brief technical overview of 3G and 4G radio technologies is given. In addition, a

literature review of some load balancing algorithms and forecasting methods is also presented.

Chapter 3 presents a load balancing algorithm for an LTE SON. The algorithm works by continuously

measuring the load of each cell and, based on this measure, adjusting the A3 event offset in order

to trigger UEs to perform handovers to less loaded cells. The load measure chosen for the algorithm

was the number of unsatisfied users in a cell, this is calculated by counting the number of UEs in a cell

whose throughput is bellow a previously established minimum requirement. This load measurement was

chosen because it has a very direct relation with the network performance, since the least unsatisfied

users in a network the better the network is performing.

Because different vendors allow setting the handover offsets either on a per cell basis or on a per

neighbour relation basis, two different variations of the algorithm were proposed, each calculates the

load imbalance between a cell and its neighbours differently, this allows the algorithm to work across

different vendors.

The proposed algorithm was shown to perform well under an array of different circumstances, reach-

ing its goal of minimising the overall number of unsatisfied users in the network.

In the base simulation, on average, the algorithm was shown to outperform the case where the

algorithm was not used by 1.3%, reaching a maximum gain of 8.8%. This simulation also showed that

the algorithm did not significantly increase the number of ping-pong handovers.

In the simulations where the algorithm’s parametrisation was varied, the impact of varying Maxoffset

was shown to have a small influence on the algorithm’s gain, however, its increase showed a strong pos-

itive correlation with the increase in ping-pong handovers. Since this increase is undesired, it becomes

clear that correctly parametrising the algorithm is key to avoid an uncontrolled increase in ping-pong

handovers.

In the simulation where no hotspot was formed, it was shown that if the load in the network is already

balanced, there is no gain in using the load balancing algorithm. This was already expected, nonethe-

less, it was proven that there are no significant harmful effects in using the load balancing algorithm

even if the load is already balanced.

When the load in the network was progressively increased, the algorithm’s gain was shown to in-

crease as the network load increases. This is an important result because it shows the more overloaded

and unbalanced the network is, the more gain there is in using the load balancing algorithm.

It was also shown that the algorithm functions for different minimum required bitrates, that is different

services, however, as the network load is generated by less and less UEs, the algorithm’s gain de-

creases. This is an intuitive result, since if the load is concentrated in less points, distributing it becomes

harder.
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Finally, it was shown that both variations of the algorithm (per cell and per neighbour relation offset

adjust) performed equally well under the same simulation scenario. This result shows the algorithm can

be used across different vendors.

Chapter 4 presented the result of several forecasting methods when applied to forecasting traffic in

radio network. The methods under study were: the average method, the naı̈ve method, the seasonal

naı̈ve method, the S-ARIMA method and the STL method. The S-ARIMA and STL methods were able

to accurately forecast network traffic two months in advance.

In the end, the best performing method was S-ARIMA, which was able to forecast traffic two months

in advance with a median error across 86 cells of around 14%. This result shows that this method has

incredible potential to be used in network traffic forecasting.

In this chapter, two concepts to evaluate the quality of a forecast, beyond just the typical error mea-

sures, were also introduced. Theses concepts focus on the confidence intervals and were denoted by

mean wideness and miss rate. The idea behind them is that a forecast is good if the confidence intervals

are narrow and there are few points outside them, this allows for forecasts with higher forecast errors

not to be dismissed provided they have a narrow confidence interval with a low miss rate.

Furthermore, this chapter also shows how to use external regressors in special cases where external

events play a major roll in traffic behavior. Specifically, game days in a football stadium were used as

external regressors to make a two month traffic forecast, which had a 31.9% MAPE and miss rates for

the 80% and 95% confidence intervals of merely 3.6% and 0%.

Lastly, this chapter explores the trade-off between the amount of data available and the accuracy

of the forecast, it was shown that dividing the data in 70% training set and 30% test set to be a good

compromise.

This work present two complementary ways of managing traffic/load in a radio network. A traffic

forecasting algorithm which allows to predict the behaviour of future network traffic, and a load balancing

algorithm which allows for a more efficient management of the current traffic in the network. These

approaches can be used together, traffic forecasting can be used to determine when it will be necessary

to expand the network by buying more resources, and the load balancing algorithm can help push back

this expansion by making an intelligent management of the currently available resources.

During this work some obstacles were encountered. Regarding the load balancing algorithm, the

biggest obstacle encountered was the simulator that was used. The large simulation running times and

the poor quality of the code were major deterrents when it came to try to do some of the items presented

in the future work section. Going forward with this work it utterly necessary to use a SON simulator,

however, this type of simulators are not readily available in the market and programming one from

scratch would be a massive undertaking. Concerning the the forecasting algorithms, the only limitation

is the amount of data available. A key feature of these algorithms is that their performance increases
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as the amount of data fed to them increases, as a result to system is always bounded by the amount of

available data.

5.2 Future work

Regarding the load balancing algorithm there is still much to be explored. For example, increasing

the realism in the simulation by using a real network topology, using real UE measurements such as

drive tests or network traces, using different minimum required bitrates for different users, and using

more realistic traffic models for the UEs instead of the full-buffer traffic model. In addition, the algorithm

can still be improved by adding a gain controller instead of curbing the maximum offset and by exploring

different parametrisation regarding the frequency as well as step height and width;

As for the forecasting, it would be interesting to validate the concepts on larger data sets, that is,

more cells and services and longer forecasting horizons. It would also be interesting, to look at cell with

higher forecasting errors, to determine the cause and possibly fix this issue.
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A
Time Series

A.1 Time series

This section is based on [29].

“A time series is a set of observations xt, each one being recorded at a specific time t” [29].

An important part of time series analysis is the selection a suitable probability model (or class of

models) for the data. Since the future is inherently uncertain each observation of time series xt can

be seen as a realisation of a random variable Xt. In other words the observed time series {xt} is a

realisation of a sequence of random variables {Xt}. The process of fitting a model to describe {Xt}

given a set of observations {xt} is called time series modelling or model fitting.

Definition A.1.1. “A time series model for the observed data {xt} is a specification of the joint

distributions (or possibly only the means and covariances) of a sequence of random variables {Xt}

of which {xt} is postulated to be a realisation” [29].

To have a complete probabilistic time series model for a sequence of random variables {X1, X2, . . .}

we would need to specify all of the joint distributions of the random vectors (X1, . . . , Xn), n = 1, 2, . . . or

87



equivalently the probabilities:

P [X1 ≤ x1, . . . , Xn ≤ xn],−∞ < x1, . . . , xn <∞, n = 1, 2, . . . (A.1)

It is very rare to have such a specification for a time series since there are too many parameters

to be estimated from the available data. Therefore, it is common to specify only the first and second

order moments of the joint distributions, that is the expected value E(Xt) and the expected products

E(Xt+h, Xt), t = 1, 2, . . . , h = 0, 1, 2, . . . [29].

A.2 Stationary models and the autocorrelation function

Two fundamental statistical properties of a time series are its mean and covariance. This properties

are related to to the first and second order moments of the series.

Definition A.2.1. “Let {Xt} be a time series with E(X2
t ) <∞. The mean function of {Xt} is

µX(t) = E(Xt). (A.2)

The covariance function of {Xt} is

γX(r, s) = Cov(Xr, Xs) = E[(Xr − µX(r))(Xs − µX(s))] (A.3)

for all integers r and s” [29].

A time series {Xt, t = 0,±1, . . .} is said to be stationary if it its statistical properties are similar to

those of a “time-shifted” series {Xt+h, t = 0,±1, . . .}, for each integer h. More formally, a time series

is said to be weakly stationary or wide-sense stationary if its mean and covariance are independent of

time.

Definition A.2.2. “{Xt} is weakly stationary if:

1. µX(t) is independent of t,

2. γX(t+ h, t) is independent of t for each h.” [29].

Strictly stationary time series are not important in the scope of this work, therefore from now on we

will use the term stationary to denote weakly stationary. In addition, whenever referring to the covariance

function of a stationary time series {Xt} the following notation applies:

γX(h) := γX(h, 0) = γX(t+ h, t) (A.4)
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The function γX(·) will be referred to as the auto-covariance function and γX(h) as its value at lag h.

The same will be true when talking about autocorrelation.

Another important concept is the Autocorrelation Function (ACF).

Definition A.2.3. “Let {Xt} be a stationary time series. The auto-covariance function of {Xt} at

lag h is

γX(h) = Cov(Xt+h, Xt). (A.5)

The autocorrelation function of {Xt} at lag h is

ρX(h) ≡ γX(h)

γX(0)
= Cor(Xt+h, Xt) (A.6)

” [29].

Some basic properties of the ACF function, γ(·), include:

• γ(0) ≥ 0;

• |γ(h)| ≤ γ(0) for all h;

• γ(·) is even, i.e., γ(h) = γ(−h) for all h

To calculate the mean, auto-covariance and autocorrelation function of time series a time series {Xt}

we would need a full probabilistic description of the series. Since this is almost never the case, in order

to study the properties of {Xt} we need to study {xt}. To do this we must define the concepts of sample

mean, auto-covariance and autocorrelation functions.

Definition A.2.4. “Let x1, . . . , xn be observations of a time series. The sample mean of x1, ..., xn is

x̄ =
1

n

n∑
t=1

xt. (A.7)

The sample auto-covariance function is

γ̂(h) := n−1
n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄), −n < h < n. (A.8)

The sample autocorrelation function is

ρ̂(h) =
γ̂(h)

γ̂(0)
, −n < h < n (A.9)

” [29].
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Informally, the ACF function can be seen as a measure of shared information between observations

as a function of the time lag between them. For example, ρ(h) can be seen as the amount of information

at lag 0 which was already contained at lag h. In other words, the amount of information at a given point

in a series that was already available h lags before.

Another key concept in time series modelling is the concept of Partial-Autocorrelation Function

(PACF), its formal definition and calculation are somewhat complex and are not necessary to under-

stand the rest of the text, instead we give an intuitive description of this function.

The PACF of a time series at lag h or α(h), can be seen as a measured of shared information

between lags 0 and h controlling for all shorter lags. In other words, α(h) is the amount of information

contained at lag 0 that is also contained at lag h but that is not contained at lags 1, 2, . . . , h− 1.

When calculating the ACF or PACF functions for a sample time series we will often obtain non-zero

values for lags up to infinity. Because of this it is necessary to define a level below which the value of

these functions is considered to be statistically irrelevant. This level is called significance level, to cal-

culate the significance level we assume the observed correlations are sample form a normal distribution

and then use null hypothesis testing [42,43]:

significance level = ±
Q
(

1+(1−α)
2

)
√
n

(A.10)

where Q(·) is the quantile function of a normal distribution with mean 0 and standard deviation 1, n is the

length of the number of observations of the sample time series and α is the percentage of the sampling

distribution which compromises the rejection region (α is usually set to 5%) [42,43].

With α = 5% equation (A.10) becomes:

significance level = ±1.96√
n

(A.11)

Having calculated the ACF and PACF functions for an observed time series {xt} if there are lags

other than 0 where the value is above the significance level then this means it possible to infer information

about the future from past observations for there is information about the future contained in the past.

A.3 Noise processes

There are some simple noise processes that can be useful to model more complex time series. Their

definitions are given bellow.

Definition A.3.1. Independent and Identically Distributed (IID) noise:

A process {Xt} is said to be an IID process if all of the random variables are independent from
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each other and have the same distribution. Since independency implies uncorrelation we have:

γX(t+ h, t) =

σ
2, if h = 0

0, if h 6= 0

(A.12)

We use the notations {Xt} ∼ IID(0, σ2) to denote an IID process with 0 mean and variance σ2.

Definition A.3.2. “White Noise (WN):

If {Xt} is a sequence of uncorrelated random variables, each with zero mean and variance σ2,

then {Xt} is stationary with the same covariance function as IID noise. Such a sequence is referred

to as WN (with mean 0 and variance σ2).

This is indicated by the notation {Xt} ∼WN(0, σ2)” [29].

The key difference between IID noise and WN is that in WN the random variables are uncorrelated

but not necessarily independent, this results in all IID processes being WN processes whereas the

reverse is not always true.
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